STATA DATA-MANAGEMENT
REFERENCE MANUAL

RELEASE 14

‘\é“:f\ ’
M0V
A s

A Stata Press Publication
StataCorp LP
College Station, Texas

E\?’\ ® Copyright (¢) 1985-2015 StataCorp LP
:’J"’"\(N[Al rights reserved
A Version 14

Published by Stata Press, 4905 Lakeway Drive, College Station, Texas 77845
Typeset in TEX

ISBN-10: 1-59718-148-X
ISBN-13: 978-1-59718-148-8

This manual is protected by copyright. All rights are reserved. No part of this manual may be reproduced, stored
in a retrieval system, or transcribed, in any form or by any means—electronic, mechanical, photocopy, recording, or
otherwise—without the prior written permission of StataCorp LP unless permitted subject to the terms and conditions
of a license granted to you by StataCorp LP to use the software and documentation. No license, express or implied,
by estoppel or otherwise, to any intellectual property rights is granted by this document.

StataCorp provides this manual “as is” without warranty of any kind, either expressed or implied, including, but
not limited to, the implied warranties of merchantability and fitness for a particular purpose. StataCorp may make
improvements and/or changes in the product(s) and the program(s) described in this manual at any time and without
notice.

The software described in this manual is furnished under a license agreement or nondisclosure agreement. The software
may be copied only in accordance with the terms of the agreement. It is against the law to copy the software onto
DVD, CD, disk, diskette, tape, or any other medium for any purpose other than backup or archival purposes.

The automobile dataset appearing on the accompanying media is Copyright @ 1979 by Consumers Union of U.S.,
Inc., Yonkers, NY 10703-1057 and is reproduced by permission from CONSUMER REPORTS, April 1979.

Stata, STATQ Stata Press, Mata, MATA and NetCourse are registered trademarks of StataCorp LP.

Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations.
NetCourseNow is a trademark of StataCorp LP.

Other brand and product names are registered trademarks or trademarks of their respective companies.

For copyright information about the software, type help copyright within Stata.

The suggested citation for this software is

StataCorp. 2015. Stata: Release 14. Statistical Software. College Station, TX: StataCorp LP.

Contents

IO« o et Introduction to data management reference manual
data management Introduction to data management commands
APPENA . .o e Append datasets
) P Verify truth of claim
beal ... Business calendar file manipulation
DY Repeat Stata command on subsets of the data
CA e Change directory
Cf e Compare two datasets
changeeol oL Convert end-of-line characters of text file
checksum Calculate checksum of file
Ol .« et e Clear memory
clonevar Clone existing variable
codebooK ... Describe data contents
collapse ... Make dataset of summary statistics
COMPATE . ot vttt ettt ettt ettt e Compare two variables
e8] 101 0) (1Y Compress data in memory
CONLIACE vttt ettt et Make dataset of frequencies and percentages
COPY t ettt Copy file from disk or URL
corr2data ... Create dataset with specified correlation structure
COUNE vttt ettt e e e Count observations satisfying specified conditions
CIOSS « ottt ettt ie e e Form every pairwise combination of two datasets
data tYPeS vttt e Quick reference for data types
datasignatureiiiiii Determine whether data have changed
datetimeo.iiii e Date and time values and variables
datetime business calendars i Business calendars
datetime business calendars creation Business calendars creation
datetime display formats Display formats for dates and times
datetime translation String to numeric date translation functions
describe Describe data in memory or in file
destring Convert string variables to numeric variables and vice versa
AT e Display filenames
drawnorm, Draw sample from multivariate normal distribution
ArOD oot e Drop variables or observations
ds oo List variables matching name patterns or other characteristics
duplicatesc.ciiiiiiiiiiii. Report, tag, or drop duplicate observations
edit Browse or edit data with Data Editor
BEEIL vttt e e e e e e Extensions to generate
ENCOde ..o Encode string into numeric and vice versa
BIASE . o ettt et e e e e e e e e e e e e Erase a disk file
EXPANA .t e Duplicate observations
expandcl ... Duplicate clustered observations
CXPOIL vt e et et e e Overview of exporting data from Stata
filefiltero Convert ASCII or binary patterns in a file

15

19
25

29
33
36
38
42
45
48
59
69
71
73
77
80
85
87

89

91

98
110
117
127
132
143
151
161
164
169
174
180

187
193
214
221
223
226
229

231

ii Contents

AN L e Rectangularize dataset
format ... e Set variables’ output format
GEMETAE . o\ vttt ettt e e e Create or change contents of variable
) PP Ascending and descending sort
hexdump Display hexadecimal report on file
10 o e Introduction to ICD commands
Icd9 ICD-9-CM diagnosis and procedure codes
IedIO oo ICD-10 diagnosis codes
IMPOTE vttt e e e et Overview of importing data into Stata
import delimited Import delimited text data
IMPOrt €XCel . ..o v e e Import and export Excel files
import haver Import data from Haver Analytics databases
IMpOrt SasXport Import and export datasets in SAS XPORT format
infile (fixed format) Read text data in fixed format with a dictionary
infile (free format) Read unformatted text data
infix (fixed format), Read text data in fixed format
INSODS .o Add or insert observations
INPUL © ettt et e et e e e Enter data from keyboard
INSPECL .+ttt e e Display simple summary of data’s attributes
ipolate e Linearly interpolate (extrapolate) values
ISId e Check for unique identifiers
JOInbY ... Form all pairwise combinations within groups
Label . Manipulate labels
label language Labels for variables and values in multiple languages
labelbook e Label utilities
] PN List values of variables
lookfor i Search for string in variable names and labels
10015100107 o 2P Memory management
00 1C) L PP Merge datasets
missing values i Quick reference for missing values
mMKAIr . Create directory
mvencode Change missing values to numeric values and vice versa
DOTES . vttt et e e e e e e e e e e Place notes in data
obS L Increase the number of observations in a dataset
odbC ... Load, write, or view data from ODBC sources
OTAOT ettt et e e e e Reorder variables in dataset
outfile e Export dataset in text format
petile .. Create variable containing percentiles
putmataiii i Put Stata variables into Mata and vice versa
TANZE o vt ettt e e e e e e e e e Generate numerical range
TECASE ettt et et e e e e Change storage type of variable
TECOAE v vt ittt e e e Recode categorical variables
TENAME .« et v ettt e et e e e e e e e e e e e e e Rename variable
TENAME GIOUD « ettt e ettt et e ee e e e et e e eeeenen Rename groups of variables

reshape Convert data from wide to long form and vice versa

235
237

251
257

261

267
274
286
297
305
314
321
331
341
360
370
378
380
388
392
395

398

403
413
420
431
441

443
449
472
473
475

479

485
487
500
504

511
523

535
538
540
549
551
562

Contents iii

TIAIT e Remove directory 579
SAMPIE o oot e Draw random sample 581
SAVE + e ettt e e e e e e e e e e Save Stata dataset 586
SEPATALE .« o v ettt e e e e e e e e Create separate variables 592
shell ..o Temporarily invoke operating system 596
SNapshot . ..o Save and restore data snapshots 602
0] P Sort data 605
Sl o e Split string variables into parts 610
SEACK .« Lt e Stack data 615
statsby ... Collect statistics for a command across a by list 621
SYSUSE « e e et et et e e e e e e e e e e e e Use shipped dataset 630
1401 Display contents of a file 633
UNICOAR . .ottt e e Unicode utilities 636
unicode collator i Language-specific Unicode collators 637
unicode convertfile Low-level file conversion between encodings 639
unicode encoding Unicode encoding utilities 642
unicode locale Unicode locale utilities 644
unicode translate e Translate files to Unicode 647
USE w ettt e e e e e e e e e e Load Stata dataset 662
VAIMANAZE .« v vveeeeee e Manage variable labels, formats, and other properties 666
WEDUSE . ottt e Use dataset from Stata website 667
XMISAVE .ot Export or import dataset in XML format 670
XPOSE ettt e e e e e Interchange observations and variables 675
zipfile Compress and uncompress files and directories in zip archive format 678

Subject and author index 681

Cross-referencing the documentation

When reading this manual, you will find references to other Stata manuals. For example,

[U] 26 Overview of Stata estimation commands
[R] regress
[XT] xtreg

The first example is a reference to chapter 26, Overview of Stata estimation commands, in the User’s
Guide; the second is a reference to the regress entry in the Base Reference Manual; and the third
is a reference to the xtreg entry in the Longitudinal-Data/Panel-Data Reference Manual.

All the manuals in the Stata Documentation have a shorthand notation:
[GSM] Getting Started with Stata for Mac

[GSU] Getting Started with Stata for Unix
[GSW] Getting Started with Stata for Windows

[U] Stata User’s Guide

[R] Stata Base Reference Manual

[BAYES] Stata Bayesian Analysis Reference Manual

[D] Stata Data Management Reference Manual

[FN] Stata Functions Reference Manual

[G] Stata Graphics Reference Manual

[IRT] Stata Item Response Theory Reference Manual
[XT] Stata Longitudinal-Data/Panel-Data Reference Manual
[ME] Stata Multilevel Mixed-Effects Reference Manual
[MI] Stata Multiple-Imputation Reference Manual
[MV] Stata Multivariate Statistics Reference Manual
[PSS] Stata Power and Sample-Size Reference Manual
[P] Stata Programming Reference Manual

[SEM] Stata Structural Equation Modeling Reference Manual
[SVY] Stata Survey Data Reference Manual

[ST] Stata Survival Analysis Reference Manual

[TS] Stata Time-Series Reference Manual

[TE] Stata Treatment-Effects Reference Manual:
Potential Outcomes/Counterfactual Outcomes

[1] Stata Glossary and Index

[M] Mata Reference Manual

Title

intro — Introduction to data management reference manual

Description Also see

Description

This manual documents most of Stata’s data management features and is referred to as the [D]
manual. Some specialized data management features are documented in such subject-specific reference
manuals as [MI] Stata Multiple-Imputation Reference Manual, [SEM] Stata Structural Equation Modeling
Reference Manual, [TS] Stata Time-Series Reference Manual, [ST] Stata Survival Analysis Reference
Manual, and [XT] Stata Longitudinal-Data/Panel-Data Reference Manual.

Following this entry, [D] data management provides an overview of data management in Stata and
of Stata’s data management commands. The other parts of this manual are arranged alphabetically.
If you are new to Stata’s data management features, we recommend that you read the following first:

[D] data management — Introduction to data management commands
[U] 12 Data

[U] 13 Functions and expressions

[U] 11.5 by varlist: construct

[U] 21 Entering and importing data

[U] 22 Combining datasets

[U] 23 Working with strings

[U] 25 Working with categorical data and factor variables

[U] 24 Working with dates and times

[U] 16 Do-files

You can see that most of the suggested reading is in [U]. That is because [U] provides overviews of
most Stata features, whereas this is a reference manual and provides details on the usage of specific
commands. You will get an overview of features for combining data from [U] 22 Combining datasets,
but the details of performing a match-merge (merging the records of two files by matching the records
on a common variable) will be found here, in [D] merge.

Stata is continually being updated, and Stata users are always writing new commands. To ensure
that you have the latest features, you should install the most recent official update; see [R] update.

Also see
[U] 1.3 What’s new

[R] intro — Introduction to base reference manual

Title

data management — Introduction to data management commands

Description Reference Also see

Description

This manual, called [D], documents Stata’s data management features. See Mitchell (2010) for
additional information and examples on data management in Stata.

Data management for statistical applications refers not only to classical data management—sorting,
merging, appending, and the like—but also to data reorganization because the statistical routines you
will use assume that the data are organized in a certain way. For example, statistical commands that
analyze longitudinal data, such as xtreg, generally require that the data be in long rather than wide
form, meaning that repeated values are recorded not as extra variables, but as extra observations.

Here are the basics everyone should know:

[D] use
[D] save

[D] describe

[D] codebook

[D] inspect

[D] count

[D] data types

[D] missing values
[D] datetime

[D] list

[D] edit
[D] varmanage

[D] rename
[D] format
[D] label

Load Stata dataset
Save Stata dataset

Describe data in memory or in file

Describe data contents

Display simple summary of data’s attributes
Count observations satisfying specified conditions
Quick reference for data types

Quick reference for missing values

Date and time values and variables

List values of variables

Browse or edit data with Data Editor
Manage variable labels, formats, and other properties

Rename variable
Set variables’ output format
Manipulate labels

You will need to create and drop variables, and here is how:

D
D
D
D

generate
egen
drop
clear

[
[
[
[

—_ = = =

Create or change contents of variable
Extensions to generate

Drop variables or observations

Clear memory

data management — Introduction to data management commands

3

For inputting or importing data, see

[D] use
[D] sysuse
[D] webuse

[D] input

[D] import

[D] import delimited
[D] import excel

[D] import haver

[D] import sasxport
[D] infile (fixed format)
[D] infile (free format)
[D] infix (fixed format)

[D] odbce
[D] xmlsave

[D] hexdump
[D] icd9

and for exporting data, see

Load Stata dataset
Use shipped dataset
Use dataset from Stata website

Enter data from keyboard

Overview of importing data into Stata

Import and export delimited-text data

Import and export Excel files

Import data from Haver Analytics databases
Import and export datasets in SAS XPORT format
Read text data in fixed format with a dictionary
Read unformatted text data

Read text data in fixed format

Load, write, or view data from ODBC sources
Export or import dataset in XML format

Display hexadecimal report on file

ICD-9-CM diagnostic and procedure codes

Save Stata dataset

Overview of exporting data from Stata

Export dataset in text format

Import and export delimited-text data

Import and export Excel files

Import and export datasets in SAS XPORT format
Load, write, or view data from ODBC sources

The ordering of variables and observations (sort order) can be important; see

[D] order
[D] sort
[D] gsort

Reorder variables in dataset
Sort data
Ascending and descending sort

4 data management — Introduction to data management commands

To reorganize or combine data, see

[D] merge
[D] append
[D] reshape
[D] collapse
[D] contract
[D] fillin

[D] expand
[D] expandcl
[D] stack
[D] joinby
[D] xpose
[D] cross

Merge datasets

Append datasets

Convert data from wide to long form and vice versa
Make dataset of summary statistics

Make dataset of frequencies and percentages
Rectangularize dataset

Duplicate observations

Duplicate clustered observations

Stack data

Form all pairwise combinations within groups
Interchange observations and variables

Form every pairwise combination of two datasets

In the above list, we particularly want to direct your attention to [D] reshape, a useful command that

beginners often overlook.

For random sampling, see

[D] sample
[D] drawnorm

For file manipulation, see

[D] type
[D] erase
[D] copy
[D] ed

[D] dir
[D] mkdir
[D] rmdir

[D] cf

[D] changeeol
[D] filefilter
[D] checksum

[D] zipfile

Draw random sample
Draw sample from multivariate normal distribution

Display contents of a file
Erase a disk file
Copy file from disk or URL

Change directory
Display filenames
Create directory

Remove directory

Compare two datasets

Convert end-of-line characters of text file
Convert text or binary patterns in a file
Calculate checksum of file

Compress and uncompress files and directories in zip archive
format

data management — Introduction to data management commands

5

For handling Unicode strings, see

[D] unicode

[D] unicode translate
[D] unicode encoding
[D] unicode locale

[D] unicode collator
[D] unicode convertfile

Unicode utilities

Translate files to Unicode

Unicode encoding utilities

Unicode locale utilities

Language-specific Unicode collators
Low-level file conversion between encoding

The entries above are important. The rest are useful when you need them:

[D] datasignature

[D] type

[D] notes

[D] label language
[D] labelbook

[D] encode
[D] recode
[D] ipolate
[D] destring
[D] mvencode
[D] pctile

[D] range

[D] by
[D] statsby

[D] compress
[D] recast

[D] datetime display formats
[D] datetime translation

[D] bcal

[D] datetime business calendars

[D] datetime business calendars
creation

Determine whether data have changed

Display contents of a file

Place notes in data

Labels for variables and values in multiple languages
Label utilities

Encode string into numeric and vice versa

Recode categorical variables

Linearly interpolate (extrapolate) values

Convert string variables to numeric variables and vice versa
Change missing values to numeric values and vice versa
Create variable containing percentiles

Generate numerical range

Repeat Stata command on subsets of the data
Collect statistics for a command across a by list

Compress data in memory
Change storage type of variable

Display formats for dates and times

String to numeric date translation functions
Business calendar file manipulation
Business calendars

Business calendars creation

6 data management — Introduction to data management commands

[D] assert Verify truth of claim
[D] clonevar Clone existing variable
] compare Compare two variables
D] corr2data Create dataset with specified correlation structure
D List variables matching name patterns or other characteristics

Report, tag, or drop duplicate observations

(D

[D]

[D] d

[D]

[D] isid Check for unique identifiers

[D] lookfor Search for string in variable names and labels
[D] memory Memory management

[D] putmata Put Stata variables into Mata and vice versa
[D] obs Increase the number of observations in a dataset
[D] rename group Rename groups of variables

[D] separate Create separate variables

[D] shell Temporarily invoke operating system

[D] snapshot Save and restore data snapshots

[D] split Split string variables into parts

There are some real jewels in the above, such as [D] notes, [D] compress, and [D] assert, which you

will find particularly useful.

Reference
Mitchell, M. N. 2010. Data Management Using Stata: A Practical Handbook. College Station, TX: Stata Press.

Also see

[D] intro — Introduction to data management reference manual

[R] intro — Introduction to base reference manual

http://www.stata-press.com/books/dmus.html

Title

append — Append datasets

Description Quick start Menu Syntax
Options Remarks and examples Also see

Description

append appends Stata-format datasets stored on disk to the end of the dataset in memory. If any
filename is specified without an extension, .dta is assumed.

Stata can also join observations from two datasets into one; see [D] merge. See [U] 22 Combining
datasets for a comparison of append, merge, and joinby.

Quick start

Append mydata2.dta to mydatal.dta with no data in memory
append using mydatal mydata2

As above, but with mydatal.dta in memory
append using mydata2

As above, and generate newv to indicate source dataset
append using mydata2, generate(newv)

As above, but do not copy value labels or notes from mydata2.dta
append using mydata2, generate(newv) nolabel nonotes

Only keep v1, v2, and v3 from mydata2.dta
append using mydata2, keep(vl v2 v3)

Menu

Data > Combine datasets > Append datasets

8 append — Append datasets

Syntax

append using filename [ﬁlename] [, options}

You may enclose filename in double quotes and must do so if filename contains blanks or other
special characters.

options Description

generate(newvar) newvar marks source of resulting observations

keep (varlist) keep specified variables from appending dataset(s)

nolabel do not copy value-label definitions from dataset(s) on disk

nonotes do not copy notes from dataset(s) on disk

force append string to numeric or numeric to string without error
Options

generate (newvar) specifies the name of a variable to be created that will mark the source of
observations. Observations from the master dataset (the data in memory before the append
command) will contain O for this variable. Observations from the first using dataset will contain 1
for this variable; observations from the second using dataset will contain 2 for this variable; and
SO on.

keep (varlist) specifies the variables to be kept from the using dataset. If keep() is not specified,
all variables are kept.

The varlist in keep (varlist) differs from standard Stata varlists in two ways: variable names in
varlist may not be abbreviated, except by the use of wildcard characters, and you may not refer
to a range of variables, such as price-weight.

nolabel prevents Stata from copying the value-label definitions from the disk dataset into the dataset
in memory. Even if you do not specify this option, label definitions from the disk dataset never
replace definitions already in memory.

nonotes prevents notes in the using dataset from being incorporated into the result. The default is
to incorporate notes from the using dataset that do not already appear in the master data.

force allows string variables to be appended to numeric variables and vice versa, resulting in missing
values from the using dataset. If omitted, append issues an error message; if specified, append
issues a warning message.

Remarks and examples
The disk dataset must be a Stata-format dataset; that is, it must have been created by save (see
[D] save).
> Example 1

We have two datasets stored on disk that we want to combine. The first dataset, called even.dta,
contains the sixth through eighth positive even numbers. The second dataset, called odd.dta, contains
the first five positive odd numbers. The datasets are

append — Append datasets 9

. use even
(6th through 8th even numbers)

. list

number even

1 6 12

2 7 14

3 8 16
. use odd

(First five odd numbers)

. list

number odd

g wWwN e
G wWwN =
©O© N oW

We will append the even data to the end of the odd data. Because the odd data are already in
memory (we just used them above), we type append using even. The result is

. append using even

. list
number odd even
1 1 1
2 2 3
3 3 5
4 4 7
5 5 9
6. 6 12
T. 7 14
8 8 16

Because the number variable is in both datasets, the variable was extended with the new data
from the file even.dta. Because there is no variable called odd in the new data, the additional
observations on odd were forward-filled with missing (.). Because there is no variable called even
in the original data, the first observations on even were back-filled with missing.

N

10 append — Append datasets

> Example 2

The order of variables in the two datasets is irrelevant. Stata always appends variables by name:

. use http://www.stata-press.com/data/r14/o0dd1
(First five odd numbers)

. describe

Contains data from http://www.stata-press.com/data/r14/odd1l.dta

obs: 5 First five odd numbers
vars: 2 9 Jan 2014 08:41
size: 40
storage display value
variable name type format label variable label
odd float %9.0g 0dd numbers
number float %9.0g

Sorted by: number
. describe using http://www.stata-press.com/data/r14/even

Contains data from http://www.stata-press.com/data/r14/even

obs: 3 6th through 8th even numbers
vars: 2 9 Jan 2014 08:43
size: 27
storage display value
variable name type format label variable label
number byte %9.0g
even float %9.0g Even numbers

Sorted by: number
. append using http://www.stata-press.com/data/r14/even

. list
odd number even
1 1 1
2 3 2
3 5 3
4 7 4
5 9 5
6. . 6 12
7. 7 14
8 8 16

The results are the same as those in the first example.

4

When Stata appends two datasets, the definitions of the dataset in memory, called the master
dataset, override the definitions of the dataset on disk, called the using dataset. This extends to value
labels, variable labels, characteristics, and date—time stamps. If there are conflicts in numeric storage
types, the more precise storage type will be used regardless of whether this storage type was in the
master dataset or the using dataset. If a variable is stored as a string in one dataset that is longer
than in the other, the longer str# storage type will prevail. If a variable is stored as a strL in one

dataset and a str# in another dataset, the strL storage type will prevail.

append — Append datasets 11

Q Technical note

If a variable is a string in one dataset and numeric in the other, Stata issues an error message
unless the force option is specified. If force is specified, Stata issues a warning message before
appending the data. If the using dataset contains the string variable, the combined dataset will have
numeric missing values for the appended data on this variable; the contents of the string variable in
the using dataset are ignored. If the using dataset contains the numeric variable, the combined dataset
will have empty strings for the appended data on this variable; the contents of the numeric variable
in the using dataset are ignored.

a

> Example 3

Because Stata has five numeric variable types—byte, int, long, float, and double—you may
attempt to append datasets containing variables with the same name but of different numeric types;
see [U] 12.2.2 Numeric storage types.

Let’s describe the datasets in the example above:

. describe using http://www.stata-press.com/data/r14/odd
Contains data from http://www.stata-press.com/data/r14/o0dd

obs: 5 First five odd numbers
vars: 2 9 Jan 2014 08:50

size: 60

storage display value

variable name type format label variable label
number float %9.0g
odd float %9.0g 0dd numbers
Sorted by:

. describe using http://www.stata-press.com/data/ri4/even

Contains data from http://www.stata-press.com/data/r14/even

obs: 3 6th through 8th even numbers
vars: 2 9 Jan 2014 08:43
size: 27
storage display value
variable name type format label variable label
number byte %9.0g
even float %9.0g Even numbers

Sorted by: number
. describe using http://www.stata-press.com/data/r14/oddeven

Contains data from http://www.stata-press.com/data/ri4/oddeven

obs: 8 First five odd numbers
vars: 3 9 Jan 2014 08:53

size: 128

storage display value

variable name type format label variable label
number float %9.0g
odd float %9.0g 0dd numbers
even float %9.0g Even numbers

Sorted by:

12 append — Append datasets

The number variable was stored as a float in odd.dta but as a byte in even.dta. Because
float is the more precise storage type, the resulting dataset, oddeven.dta, had number stored as
a float. Had we instead appended odd.dta to even.dta, number would still have been stored as
a float:

. use http://www.stata-press.com/data/r14/even, clear
(6th through 8th even numbers)

. append using http://www.stata-press.com/data/r14/odd
(note: variable number was byte, now float to accommodate using data’s values)

. describe

Contains data from http://www.stata-press.com/data/r14/even.dta

obs: 8 6th through 8th even numbers
vars: 3 9 Jan 2014 08:43

size: 96

storage display value

variable name type format label variable label
number float %9.0g
even float %9.0g Even numbers
odd float %9.0g 0dd numbers
Sorted by:

Note: Dataset has changed since last saved.

> Example 4

Suppose that we have a dataset in memory containing the variable educ, and we have previously
given a label variable educ "Education Level" command so that the variable label associated
with educ is “Education Level”. We now append a dataset called newdata.dta, which also contains
a variable named educ, except that its variable label is “Ed. Lev”. After appending the two datasets,
the educ variable is still labeled “Education Level”. See [U] 12.6.2 Variable labels.

d

> Example 5

Assume that the values of the educ variable are labeled with a value label named educlbl. Further
assume that in newdata.dta, the values of educ are also labeled by a value label named educlbl.
Thus there is one definition of educlbl in memory and another (although perhaps equivalent) definition
in newdata.dta. When you append the new data, you will see the following:

. append using newdata
label educlbl already defined

If one label in memory and another on disk have the same name, append warns you of the problem
and sticks with the definition currently in memory, ignoring the definition in the disk file.

4

append — Append datasets 13

Q Technical note

When you append two datasets that both contain definitions of the same value label, the codings
may not be equivalent. That is why Stata warns you with a message like “label educlbl already
defined”. If you do not know that the two value labels are equivalent, you should convert the value-
labeled variables into string variables, append the data, and then construct a new coding. decode and
encode make this easy:

. use newdata, clear

. decode educ, gen(edstr)
. drop educ

. save newdata, replace

. use basedata

. decode educ, gen(edstr)
. drop educ

. append using newdata

. encode edstr, gen(educ)

. drop edstr

See [D] encode.

You can specify the nolabel option to force append to ignore all the value-label definitions in
the incoming file, whether or not there is a conflict. In practice, you will probably never want to do
this.

a

> Example 6

Suppose that we have several datasets containing the populations of counties in various states. We
can use append to combine these datasets all at once and use the generate() option to create a
variable identifying from which dataset each observation originally came.

. use http://www.stata-press.com/data/r14/capop
. list

county pop

[ure

Los Angeles 9878554
Orange 2997033
3. Ventura 798364

N

. append using http://www.stata-press.com/data/r14/ilpop
> http://www.stata-press.com/data/r14/txpop, generate(state)

. label define statelab O "CA" 1 "IL" 2 "TX"

. label values state statelab

14 append — Append datasets

. list

county pop state
1. Los Angeles 9878554 CA
2. Orange 2997033 CA
3. Ventura 798364 CA
4. Cook 5285107 IL
5. DeKalb 103729 IL
6. Will 673586 IL
7. Brazos 152415 TX
8. Johnson 149797 TX
9. Harris 4011475 TX

Also see

[D] cross — Form every pairwise combination of two datasets
[D] joinby — Form all pairwise combinations within groups
[D] merge — Merge datasets

[D] save — Save Stata dataset

[D] use — Load Stata dataset

[U] 22 Combining datasets

Title

assert — Verify truth of claim

Description Quick start Syntax Options Remarks and examples
Also see

Description

assert verifies that exp is true. If it is true, the command produces no output. If it is not true,
assert informs you that the “assertion is false” and issues a return code of 9; see [U] 8 Error
messages and return codes.

Quick start

Confirm that v1 only takes values O or 1
assert vi==0 | vi==

Verity that v2 is between 100 and 200 and never missing
assert inrange(v2,100,200)

Verity that v2 is between 100 and 200 for all nonmissing values
assert inrange(v2,100,200) if !missing(v2)

Verity that v2 is between 100 and 200 and never missing when catvar equals 2 or 3
assert inrange(v2,100,200) if (catvar==2 | catvar==3)

Verify that there are 5 observations per cluster identified by cvar
by cvar: assert _N==5

As above, but stop checking after the first cluster has fewer than or more than 5 observations
by cvar: assert _N==5, fast

15

16 assert — Verify truth of claim

Syntax

assert exp [lf} [ln} [, rcO null iast]

by is allowed; see [D] by.

Options
rcO forces a return code of 0, even if the assertion is false.

null forces a return code of 8 on null assertions.

fast forces the command to exit at the first occurrence that exp evaluates to false.

Remarks and examples

assert is seldom used interactively because it is easier to use inspect, summarize, or tabulate
to look for evidence of errors in the dataset. These commands, however, require you to review the
output to spot the error. assert is useful because it tells Stata not only what to do but also what
you can expect to find. Groups of assertions are often combined in a do-file to certify data. If the
do-file runs all the way through without complaining, every assertion in the file is true.

. do myassert

. use trans, clear
(xplant data)

. assert sex=="m" | sex=="f"

. assert packs==0 if !smoker

. assert packs>0 if smoker

. sort patient date

. by patient: assert sex==sex[_n-1] if _n>1

. by patient: assert abs(bp-bp[_n-1]) < 20 if bp< . & bp[_n-1]< .
. by patient: assert died==0 if _n!=_N

. by patient: assert died==0 | died==1 if _n==_

. by patient: assert n_xplant==0 | n_xplant==1 if _n==_

. assert inval==int(inval)

end of do-file

> Example 1

You receive data from Bob, a coworker. He has been working on the dataset for some time, and
it has now been delivered to you for analysis. Before analyzing the data, you (smartly) verify that
the data are as Bob claims. In Bob’s memo, he claims that 1) the dataset reflects the earnings of 522
employees, 2) the earnings are only for full-time employees, 3) the variable female is coded 1 for
female and 0 otherwise, and 4) the variable exp contains the number of years, or fraction thereof, on
the job. You assemble the following do-file:

use frombob, clear

assert _N==522

assert sal>=6000 & sal<=125000
assert female==1 | female==

assert — Verify truth of claim 17

gen work=sum(female==1)
assert work[_N]>0

replace work=sum(female==0)
assert work[_N]>0

drop work

assert exp>=0 & exp<=40

Let’s go through these assertions one by one. After using the data, you assert that _N equals 522.
Remember, _N reflects the total number of observations in the dataset; see [U] 13.4 System variables
(—variables). Bob said it was 522, so you check it. Bob’s second claim was that the data are for only
full-time employees. You know that everybody in your company makes a salary between $6,000 and
$125,000, so you check that the salary figures are within this range. Bob’s third assertion was that
the female variable was coded zero or one.

You add something more. You know that your company employs both males and females, so you
check that there are some of each. You create a variable called work equal to the running sum of
female observations and then verify that the last observation of this variable is greater than zero.
You then repeat the process for males and discard the work variable. Finally, you verify that the exp
variable is never negative and is never larger than 40.

You save the above file as check.do, and here is what happens when you run it:

. do check

. use frombob, clear
(5/21 data)

. assert ==522

. assert sal>6000 & sal<=125000

14 contradictions in 522 observations
assertion is false

r(9);

end of do-file
r(9);

Everything went fine until you checked the salary variable, when Stata told you that there were 14
contradictions to your assertion and stopped the do-file. Seeing this, you now interactively summarize
the sal variable and discover that 14 people have missing salaries. You dash off a memo to Bob
asking him why these data are missing.

N

> Example 2

Bob responds quickly. There was a mistake in reading the salaries for the consumer relations
division. He says it’s fixed. You believe him but check with your do-file again. This time you type
run instead of do, suppressing all the output:

. run check

Even though you suppressed the output, if there had been any contradictions, the messages would
have printed. check.do ran fine, so all its assertions are true.

d

18 assert — Verify truth of claim

Q Technical note

assert is especially useful when you are processing large amounts of data in a do-file and wish to
verify that all is going as expected. The error here may not be in the data but in the do-file itself. For
instance, your do-file is rolling along, and it has just merged two datasets that it created by subsetting
some other data. If everything has gone right so far, every observation should have merged. Include
the line

assert _merge==
to verify the correctness of the merge. If all the observations did not merge, the assertion will be
false, and your do-file will stop.

As another example, you are combining data from many sources, and you know that after the first
two datasets are combined, every individual’s sex should be defined. So, you include the line

assert sex< .

in your do-file. Experienced Stata users include many assertions in their do-files when they process
data.
a

Q Technical note

assert is smart in how it evaluates expressions. When you type something like assert _N==522
or assert work[_N]>0, assert knows that the expression needs to be evaluated only once. When
you type assert female==1 | female==0, assert knows that the expression needs to be evaluated
once for each observation in the dataset.

Here are some more examples demonstrating assert’s intelligence.

by female: assert _N==100

asserts that there should be 100 observations for every unique value of female. The expression is
evaluated once per by-group.

by female: assert work[_N]>0

asserts that the last observation on work in every by-group should be greater than zero. It is evaluated
once per by-group.

by female: assert work>0

is evaluated once for each observation in the dataset and, in that sense, is formally equivalent to
assert work>O0.

a

Also see
[P] capture — Capture return code
[P] confirm — Argument verification
[U] 16 Do-files

Title

bcal — Business calendar file manipulation
Description Quick start Menu
Syntax Option for bcal check Options for bcal create
Remarks and examples Stored results Also see
Description

See [D] datetime business calendars for an introduction to business calendars and dates.
bcal check lists the business calendars used by the data in memory, if any.

bcal dir pattern lists filenames and directories of all available business calendars matching
pattern, or all business calendars if pattern is not specified.

bcal describe calname presents a description of the specified business calendar.

bcal load calname loads the specified business calendar. Business calendars load automatically
when needed, and thus use of bcal load is never required. bcal load is used by programmers
writing their own business calendars. bcal load calname forces immediate loading of a business
calendar and displays output, including any error messages due to improper calendar construction.

bcal create filename, from(varname) creates a business calendar file based on dates in varname.
Business holidays are inferred from gaps in varname. The qualifiers if and in, as well as the option
excludemissing(), can also be used to exclude dates from the new business calendar.

Quick start

Create business calendar file mycal.stbcal from date variable tvar in the dataset in memory
bcal create mycal, from(tvar)

As above, and generate business date variable newt formatted as %tbmycal
bcal create mycal, from(tvar) generate(newt)

List directories and filenames of available business calendars
bcal dir

Describe range, center date, and number of omitted days in business calendar mycal.stbcal
bcal describe mycal

Report any %tb formats applied to the variables in memory
bcal check

Menu

Data > Other utilities > Create a business calendar
Data > Other utilities > Manage business calendars

Data > Variables Manager

19

20 bcal — Business calendar file manipulation

Syntax
List business calendars used by the data in memory

bcal check [varlist] [, rcO]

List filenames and directories of available business calendars

bcal dir [pattern]

Describe the specified business calendar

bcal describe calname

Load the specified business calendar

bcal load calname

Create a business calendar from the current dataset

bcal create filename [lf] [in], from (varname) [bcal_create_options]

where

varlist is a list of variable names to be checked for whether they use business calendars. If not
specified, all variables are checked.

pattern is the name of a business calendar possibly containing wildcards * and ?. If pattern is not
specified, all available business calendar names are listed.

calname is the name of a business calendar either as a name or as a datetime format; for example,
calname could be simple or %tbsimple.

filename is the name of the business calendar file created by bcal create.

bcal_create_options Description
Main
* from (varname) specify date variable for calendar
generate (newvar) generate newvar containing business dates
gxcludemissing(vurlist [, any]) exclude observations with missing values in varlist
personal save calendar file in your PERSONAL directory
replace replace file if it already exists
Advanced
purpose (fext) describe purpose of calendar
dateformat (ymd | ydm | myd |mdy | dym | dmy) specify date format in calendar file
range (fromdate todate) specify range of calendar
centerdate (date) specify center date of calendar
maxgap (#) specify maximum gap allowed; default is 10 days

*from (varname) is required.

bcal — Business calendar file manipulation 21

Option for bcal check
[Main |

rcO specifies that bcal check is to exit without error (return 0) even if some calendars do not exist
or have errors. Programmers can then access the results bcal check stores in r() to get even
more details about the problems. If you wish to suppress bcal dir, precede the bcal check
command with capture and specify the rcO option if you wish to access the r() results.

Options for bcal create
Main

from(varname) specifies the date variable used to create the business calendar. Gaps between dates
in varname define business holidays. The longest gap allowed can be set with the maxgap()
option. from() is required.

generate (newvar) specifies that newvar be created. newvar is a date variable in % tbcalname format,
where calname is the name of the business calendar derived from filename.

excludemissing (varlist [, any}) specifies that the dates of observations with missing values in
varlist are business holidays. By default, the dates of observations with missing values in all
variables in varlist are holidays. The any suboption specifies that the dates of observations with
missing values in any variable in varlist are holidays.

personal specifies that the calendar file be saved in the PERSONAL directory. This option cannot be
used if filename contains the pathname of the directory where the file is to be saved.

replace specifies that the business calendar file be replaced if it already exists.

Advanced

purpose (text) specifies the purpose of the business calendar being created. fext cannot exceed 63
characters.

dateformat (ymd | ydm | myd | mdy | dym | dmy) specifies the date format in the new business calendar.
The default is dateformat (ymd). dateformat() has nothing to do with how dates will look
when variables are formatted with %tbcalname; it specifies how dates are typed in the calendar
file.

range (fromdate todate) defines the date range of the calendar being created. fromdate and todate
should be in the format specified by the dateformat () option; if not specified, the default ymd
format is assumed.

centerdate (date) defines the center date of the new business calendar. If not specified, the earliest
date in the calendar is assumed. date should be in the format specified by the dateformat ()
option; if not specified, the default ymd format is assumed.

maxgap (#) specifies the maximum number of consecutive business holidays allowed by bcal create.
The default is maxgap (10).

Remarks and examples

bcal check reports on any %tb formats used by the data in memory:

. bcal check

%tbsimple: defined, used by variable
mydate

22 bcal — Business calendar file manipulation

bcal dir reports on business calendars available:

. bcal dir
1 calendar file found:
simple: C:\Program Files\Statal4\ado\base\s\simple.stbcal

bcal describe reports on an individual calendar.

. bcal describe simple
Business calendar simple (format %tbsimple):
purpose: Example for manual
range: Olnov2014 30nov2014

18932 18961 in %td units
0 19 in Ytbsimple units
center: 01lnov2012
18932 in %td units
0 in %tbsimple units
omitted: 10 days
121.8 approx. days/year
included: 20 days
243.5 approx. days/year

bcal load is used by programmers writing new stbcal-files. See [D] datetime business calendars
creation.

bcal create creates a business calendar file from the current dataset and describes the new

calendar. For example, sp500.dta is a dataset installed with Stata that has daily records on the
S&P 500 stock market index in 2001. The dataset has observations only for days when trading took
place. A business calendar for stock trading in 2001 can be automatically created from this dataset
as follows:

. sysuse sp500

(S&P 500)

. bcal create sp500, from(date) purpose(S&P 500 for 2001) generate(bizdate)

Business calendar sp500 (format %tbsp500) :
purpose: S&P 500 for 2001
range: 02jan2001 31dec2001

14977 156340 in %td units
0 247 in Ytbsp500 units
center: 02jan2001
14977 in %td units
0 in %tbsp500 units
omitted: 116 days
116.4 approx. days/year
included: 248 days
248.9 approx. days/year

Notes:
business calendar file sp500.stbcal saved

variable bizdate created; it contains business dates in %tbsp500 format

bcal — Business calendar file manipulation 23

The business calendar file created:

begin sp500.stbcal

* Business calendar "sp500" created by -bcal create-
* Created/replaced on 15 Jan 2015

version 14
purpose

"S&P 500 for 2001"

dateformat ymd

range 2001jan02 2001dec31
centerdate 2001jan02

dayofweek (Sa Su)

omit
omit
omit
omit
omit
omit
omit
omit
omit
omit
omit
omit
omit

date
date
date
date
date
date
date
date
date
date
date
date

2001jan1b
2001feb19
2001apri3
2001may28
2001julo4
2001sep03
2001sepill
2001sepi12
2001sep13
2001sepi14
2001nov22
2001dec25

end sp500.stbcal

bcal create filename, from() can save the calendar file anywhere in your directory system
by specifying a path in filename. It is assumed that the directory where the file is to be saved
already exists. The pattern of filename should be [path]calname[.stbcal] Here calname should
be without the %tb prefix; calname has to be a valid Stata name but limited to 10 characters. If path
is not specified, the file is saved in the current working directory. If the .stbcal extension is not
specified, it is added.

Save the file in a directory where Stata can find it. Stata automatically searches for stbcal-files
in the same way it searches for ado-files. Stata looks for ado-files and stbcal-files in the official
Stata directories, your site’s directory (SITE), your current working directory, your personal directory
(PERSONAL), and your directory for materials written by other users (PLUS). The option personal
specifies that the calendar file be saved in your PERSONAL directory, which ensures that the created
calendar can be easily found in future work.

Stored results

bcal check stores the following in r():

Macros

r(defined) business calendars used, stbcal-file exists, and file contains no errors
r(undefined) business calendars used, but no stbcal-files exist for them

Warning to programmers: Specify the rcO option to access these returned results. By default, bcal
check returns code 459 if a business calendar does not exist or if a business calendar exists but has
errors; in such cases, the results are not stored.

24 bcal — Business calendar file manipulation

bcal describe and bcal create store the following in r():

Scalars
r(min_date_td) calendar’s minimum date in %td units
r(max_date_td) calendar’s maximum date in %td units
r(ctr_date_td) calendar’s zero date in %td units
r(min_date_tb) calendar’s minimum date in %tb units
r(max_date_tb) calendar’s maximum date in %tb units

r(omitted) total number of days omitted from calendar

r(included) total number of days included in calendar
Macros

r (name) pure calendar name (for example, nyse)

r (purpose) short description of calendar’s purpose

bcal load stores the same results in r() as bcal describe, except it does not store r (omitted)
and r(included).

Also see

[D] datetime — Date and time values and variables
[D] datetime business calendars — Business calendars

[D] datetime business calendars creation — Business calendars creation

Title

by — Repeat Stata command on subsets of the data

Description Quick start Syntax Options
Remarks and examples References Also see

Description

Most Stata commands allow the by prefix, which repeats the command for each group of observations
for which the values of the variables in varlist are the same. by without the sort option requires
that the data be sorted by varlist; see [D] sort.

Stata commands that work with the by prefix indicate this immediately following their syntax
diagram by reporting, for example, “by is allowed; see [D] by” or “bootstrap, by, etc., are allowed;
see [U] 11.1.10 Prefix commands”.

by and bysort are really the same command; bysort is just by with the sort option.
The varlist; (varlisty) syntax is of special use to programmers. It verifies that the data are sorted
by varlist; varlists and then performs a by as if only varlist; were specified. For instance,

by pid (time): generate growth = (bp - bp[_n-1])/bp

performs the generate by values of pid but first verifies that the data are sorted by pid and time
within pid.

Quick start

Generate newv as an observation number within each level of catvar
by catvar: generate newv = _n

As above, but sort data by catvar first

by catvar, sort: generate newv = _n

Same as above

bysort catvar: generate newv = _n

As above, but sort by v within values of catvar

bysort catvar (v): generate newv = _n

Generate newv as an observation number for each observation in levels of catvar and v

bysort catvar v: generate newv = _n

Note: Any command that accepts the by prefix may be substituted for generate above.

25

26 by — Repeat Stata command on subsets of the data

Syntax

by varlist : stata_cmd

bysort varlist : stata_cmd

The above diagrams show by and bysort as they are typically used.
The full syntax of the commands is

by varlist; [(varlistg)} [, sort rcO] 1 stata_cmd

bysort varlist; [(varlistg)] [, rcO]: stata_cmd

Options

sort specifies that if the data are not already sorted by varlist, by should sort them.

rcO specifies that even if the stara_cmd produces an error in one of the by-groups, then by is still
to run the stata_cmd on the remaining by-groups. The default action is to stop when an error
occurs. rcO is especially useful when stata_cmd is an estimation command and some by-groups

have insufficient observations.

Remarks and examples

> Example 1

. use http://www.stata-press.com/data/ri4/autornd
(1978 Automobile Data)

. keep in 1/20
(54 observations deleted)

. by mpg: egen mean_w = mean(weight)
not sorted
r(5);

. sort mpg

. by mpg: egen mean_w = mean(weight)

by — Repeat Stata command on subsets of the data 27

. list
make weight mpg mean_w
1. Cad. Eldorado 4000 15 3916.667
2. Chev. Impala 3500 156 3916.667
3. Cad. Deville 4500 156 3916.667
4. Buick Riviera 4000 15 3916.667
5. Buick Electra 4000 15 3916.667
6. AMC Pacer 3500 15 3916.667
7. AMC Concord 3000 20 3350
8. Buick Century 3500 20 3350
9. Chev. Malibu 3000 20 3350
10. | Buick Skylark 3500 20 3350
11. Buick Regal 3500 20 3350
12. AMC Spirit 2500 20 3350
13. Chev. Nova 3500 20 3350
14. Buick LeSabre 3500 20 3350
15. Chev. Monte Carlo 3000 20 3350
16. Cad. Seville 4500 20 3350
17. Chev. Monza 3000 25 2500
18. Buick Opel 2000 25 2500
19. Chev. Chevette 2000 30 2000
20. Dodge Colt 2000 30 2000

by requires that the data be sorted. In the above example, we could have typed by mpg, sort: egen
mean_w = mean(weight) or bysort mpg: egen mean_w = mean(weight) rather than the separate
sort; all would yield the same results.

4

For more examples, see [U] 11.1.2 by varlist:, [U] 11.5 by varlist: construct, and [U] 27.2 The
by construct. For extended introductions with detailed examples, see Cox (2002) and Mitchell (2010,

chap. 7).

Q Technical note

by repeats the stata_cmd for each group defined by varlist. If stata_cmd stores results, only the

results from the last group on which stata_cmd executes will be stored.

References

Cox, N. J. 2002. Speaking Stata: How to move step by: step. Stata Journal 2: 86-102.
Mitchell, M. N. 2010. Data Management Using Stata: A Practical Handbook. College Station, TX: Stata Press.

a

http://www.stata-journal.com/sjpdf.html?articlenum=pr0004
http://www.stata-press.com/books/dmus.html

28 by — Repeat Stata command on subsets of the data

Also see
[D] sort — Sort data
[D] statsby — Collect statistics for a command across a by list
[P] byable — Make programs byable
[P] foreach — Loop over items
[P] forvalues — Loop over consecutive values
[P] while — Looping
[U] 11.1.2 by varlist:
[U] 11.1.10 Prefix commands
[U] 11.4 varlists
[U] 11.5 by varlist: construct
[u] 27.2 The by construct

Title

cd — Change directory

Description Quick start Syntax Remarks and examples Also see

Description

Stata for Windows: cd changes the current working directory to the specified drive and directory.
pwd is equivalent to typing cd without arguments; both display the name of the current working
directory. Note: You can shell out to a DOS window; see [D] shell. However, typing ! cd directory_name
does not change Stata’s current directory; use the cd command to change directories.

Stata for Mac and Stata for Unix: cd (synonym chdir) changes the current working directory to
directory_name or, if directory_name is not specified, the home directory. pwd displays the path of
the current working directory.

Quick start

Change working directory in Stata for Windows to C:\mydir\myfolder
cd c:\mydir\myfolder

Change working directory in Stata for Windows to C:\my dir\my folder
cd "c:\my dir\my folder"

Change working directory in Stata for Mac or Unix to mydir/myfolder
cd mydir/myfolder

Move up one level in the directory structure
cd ..

Move to myfolder from mydir
cd myfolder

View current working directory
pwd

Go to home directory in Stata for Mac or Unix
cd

29

30 cd — Change directory

Syntax

Stata for Windows

cd
cd ["] directory_name ["]

cd ["]drive: ["]
cd [u] drive: directory_name ["]

pwd

Stata for Mac and Stata for Unix

cd
cd ["] directory_name ["]

pwd

If your directory_name contains embedded spaces, remember to enclose it in double quotes.

Remarks and examples

Remarks are presented under the following headings:
Stata for Windows

Stata for Mac
Stata for Unix

Stata for Windows

When you start Stata for Windows, your current working directory is set to the Start in directory
specified in Properties. If you want to change this, see [GSW] B.1 The Windows Properties Sheet.
You can always see what your working directory is by looking at the status bar at the bottom of the
Stata window.

Once you are in Stata, you can change your directory with the cd command.
. cd
c:\data

. cd city

c:\data\city

. cd d:

D:\

. cd kande

D:\kande

. cd "additional detail"
D:\kande\additional detail
. cd c:

C:\

. cd data\city
C:\data\city

cd — Change directory 31

. cd \a\b\c\d\e\f\g
C:\a\b\c\d\e\f\g
.cd ..
C:\a\b\c\d\e\f

.cd ...

C:\a\b\c\d

.cd ...
C:\a

When we typed cd d:, we changed to the current directory of the D drive. We navigated our
way to d:\kande\additional detail with three commands: cd d:, then cd kande, and then
cd "additional detail". The double quotes around ‘“additional detail” are necessary because of
the space in the directory name. We could have changed to this directory in one command: cd
"d:\kande\additional detail".

Notice the last three cd commands in the example above. You are probably familiar with the
cd .. syntax to move up one directory from where you are. The last two cd commands above let
you move up more than one directory: cd ... is shorthand for ‘cd ..\..” and cd is shorthand
for ‘cd ..\..\..’. These shorthand cd commands are not limited to Stata; they will work in your
DOS windows under Windows as well.

Stata for Mac

Read [U] 11.6 Filenaming conventions for a description of how filenames are written in a command
language before reading this entry.

Invoking an application and then changing folders is an action foreign to most Mac users. If it is
foreign to you, you can ignore cd and pwd. However, they can be useful. You can see the current
folder (where Stata saves files and looks for files) by typing pwd. You can change the current folder
by using cd or by selecting File > Change working directory.... Stata’s cd understands ‘~’ as an
abbreviation for the home directory, so you can type things like cd ~/data.

. pwd
/Users/bill/proj

. cd "~/data/city"
/Users/bill/data/city

If you now wanted to change to "/Users/bill/data/city/ny", you could type cd ny. If you
wanted instead to change to "/Users/bill/data", you could type ‘cd .. .

Stata for Unix

cd and pwd are equivalent to Unix’s cd and pwd commands. Like csh, Stata’s cd understands
‘~” as an abbreviation for the home directory $HOME, so you can type things like cd ~/data; see
[U] 11.6 Filenaming conventions.
. pwd
/usr/bill/proj

. cd ~/data/city
/usr/bill/data/city

32 cd — Change directory

If you now wanted to change to /usr/bill/data/city/ny, you could type cd ny. If you wanted
instead to change to /usr/bill/data, you could type ‘cd ..’ .

Also see
[D] copy — Copy file from disk or URL
[D] dir — Display filenames
[D] erase — Erase a disk file
[D] mkdir — Create directory
[D] rmdir — Remove directory
[D] shell — Temporarily invoke operating system
[D] type — Display contents of a file

[U] 11.6 Filenaming conventions

Title

cf — Compare two datasets

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Acknowledgment Reference Also see

Description

cf compares varlist of the dataset in memory (the master dataset) with the corresponding variables
in filename (the using dataset). cf returns nothing (that is, a return code of 0) if the specified variables
are identical and a return code of 9 if there are any differences. Only the variable values are compared.
Variable labels, value labels, notes, characteristics, etc., are not compared.

Quick start

Compare values of v1 and v2 from mydatal.dta in memory to mydata2.dta
cf vl v2 using mydata2

As above, but give a detailed listing of the differences
cf vl v2 using mydata2, verbose

As above, but for all variables in memory
cf _all using mydata2, verbose

Menu

Data > Data utilites > Compare two datasets

33

34 cf — Compare two datasets

Syntax

cf varlist using filename [, all yerbose]

Options

all displays the result of the comparison for each variable in varlist. Unless all is specified, only
the results of the variables that differ are displayed.

verbose gives a detailed listing, by variable, of each observation that differs.

Remarks and examples

cf produces messages having the following form:

varname: does not exist in using
varname: ___ in master but ___ in using
varname: ___ mismatches

varname: match

An example of the second message is “str4 in master but float in using”. Unless all is specified, the
fourth message does not appear—silence indicates matches.

> Example 1

We think the dataset in memory is identical to mydata.dta, but we are unsure. We want to
understand any differences before continuing:

. cf _all using mydata

All the variables in the master dataset are in mydata.dta, and these variables are the same in both
datasets. We might see instead

. cf _all using mydata
mpg: 2 mismatches
headroom: does not exist in using
displacement: does not exist in using
gear_ratio: does not exist in using
r(9);

Two changes were made to the mpg variable, and the headroom, displacement, and gear_ratio
variables do not exist in mydata.dta.

To see the result of each comparison, we could append the all option to our command:

. cf _all using mydata, all
make: match
price: match
mpg: 2 mismatches
rep78: match
headroom: does not exist in using
trunk: match
weight: match
length: match
turn: match
displacement: does not exist in using
gear_ratio: does not exist in using
foreign: match
r(9);

cf — Compare two datasets 35

For more details on the mismatches, we can use the verbose option:

. cf _all using mydata, verbose
mpg: 2 mismatches
obs 1. 22 in master; 33 in using
obs 2. 17 in master; 33 in using
headroom: does not exist in using
displacement: does not exist in using
gear_ratio: does not exist in using
r(9);

This example shows us exactly which two observations for mpg differ, as well as the value stored
in each dataset. q

> Example 2

We want to compare a group of variables in the dataset in memory against the same group of
variables in mydata.dta.

. cf mpg headroom using mydata
mpg: 2 mismatches
headroom: does not exist in using
r(9);

Stored results
cf stores the following in r():

Macros
r (Nsum) number of differences

Methods and formulas

If you are using Small Stata, you may get the error “too many variables” when you stipulate _all
and have many variables in your dataset. (This will not happen if you are using Stata/MP, Stata/SE,
or Stata/IC.) If this happens, you will have to perform the comparison with groups of variables. See
example 2 for details about how to do this.

Acknowledgment

Speed improvements in cf were based on code written by David Kantor.

Reference

Gleason, J. R. 1995. dm36: Comparing two Stata data sets. Stata Technical Bulletin 28: 10-13. Reprinted in Stata
Technical Bulletin Reprints, vol. 5, pp. 39-43. College Station, TX: Stata Press.

Also see

[D] compare — Compare two variables

http://www.stata.com/products/stb/journals/stb28.pdf

Title

changeeol — Convert end-of-line characters of text file

Description Quick start Syntax Options Remarks and examples
Also see

Description

changeeol converts text file filenamel to text file filename2 with the specified Win-
dows/Unix/Mac/classic Mac-style end-of-line characters. changeeol changes the end-of-line charac-
ters from one type of file to another.

Quick start

Create mytext2.txt with Windows end-of-line characters from mytextl.txt
changeeol mytextl.txt mytext2.txt, eol(windows)

As above, but convert to Mac-style end-of-line characters
changeeol mytextl.txt mytext2.txt, eol(mac)

As above, but convert to Unix-style end-of-line characters
changeeol mytextl.txt mytext2.txt, eol(unix)

Syntax

changeeol filenamel filename2, eol (platform) [options]

filenamel and filename2 must be filenames.

Note: Double quotes may be used to enclose the filenames, and the quotes must be used if the
filename contains embedded blanks.

options Description
*eol(windows) convert to Windows-style end-of-line characters (\r\n)
*eol(dos) synonym for eol (windows)
*eol(unix) convert to Unix-style end-of-line characters (\n)
*eol(mac) convert to Mac-style end-of-line characters (\n)
*eol(classicmac) convert to classic Mac-style end-of-line characters (\r)

replace overwrite filename2

force force to convert filenamel to filename?2 if filenamel is a binary file

*eol() is required.

36

changeeol — Convert end-of-line characters of text file 37

Options
eol(windows | dos |unix |mac | classicmac) specifies to which platform style filename2 is to be
converted. eo1() is required.
replace specifies that filename2 be replaced if it already exists.

force specifies that filenamel be converted if it is a binary file.

Remarks and examples

changeeol uses hexdump to determine whether filenamel is text or binary. If it is binary,
changeeol will refuse to convert it unless the force option is specified.

Examples

Windows:

. changeeol orig.txt newcopy.txt, eol(windows)
Unix:

. changeeol orig.txt newcopy.txt, eol(unix)
Mac:

. changeeol orig.txt newcopy.txt, eol(mac)
Classic Mac:

. changeeol orig.txt newcopy.txt, eol(classicmac)

Also see

[D] filefilter — Convert ASCII or binary patterns in a file
[D] hexdump — Display hexadecimal report on file

Title

checksum — Calculate checksum of file

Description Quick start Syntax Options
Remarks and examples Stored results Also see

Description

checksum creates filename.sunm files for later use by Stata when it reads files over a network.
These optional files are used to reduce the chances of corrupted files going undetected. Whenever
Stata reads file filename . suffix over a network, whether by use, net, update, etc., it also looks for
filename . sum. If Stata finds that file, Stata reads it and uses its contents to verify that the first file
was received without error. If there are errors, Stata informs the user that the file could not be read.

set checksum on tells Stata to verify that files downloaded over a network have been received
without error.

set checksum off, which is the default, tells Stata to bypass the file verification.

Quick start

Calculate checksum of mydata.dta

checksum mydata.dta

As above, and save results to mydata.sum
checksum mydata.dta, save

As above, but save results to mycheck.sum
checksum mydata.dta, saving(mycheck.sum)

As above, but replace mycheck. sum if it exists
checksum mydata.dta, saving(mycheck.sum, replace)

38

checksum — Calculate checksum of file 39

Syntax

checksum filename [, options}

set checksum { on|off } [, permanently |

options Description

save save output to filename . sum; default is to display a report
replace may overwrite filename . sum; use with save
saving(filename2 [, replace]) save output to filename2; alternative to save

Q Technical note

checksum calculates a CRC checksum following the POSIX 1003.2 specification and displays the
file size in bytes. checksum produces the same results as the Unix cksum command. Comparing the
checksum of the original file with the received file guarantees the integrity of the received file.

When comparing Stata’s checksum results with those of Unix, do not confuse Unix’s sum and
cksum commands. Unix’s cksum and Stata’s checksum use a more robust algorithm than that used
by Unix’s sum. In some Unix operating systems, there is no cksum command, and the more robust
algorithm is obtained by specifying an option with sum.

a

Options
save saves the output of the checksum command to the text file filename.sum. The default is to
display a report but not create a file.
replace is for use with save; it permits Stata to overwrite an existing filename . sum file.

saving (filename2 [, replace]) is an alternative to save. It saves the output in the specified
filename. You must supply a file extension if you want one, because none is assumed.

permanently specifies that, in addition to making the change right now, the checksum setting be
remembered and become the default setting when you invoke Stata.

Remarks and examples

> Example 1

Say that you wish to put a dataset on your homepage so that colleagues can use it over the Internet
by typing
. use http://www.myuni.edu/department/~joe/mydata

mydata.dta is important, and even though the chances of the file mydata.dta being corrupted by
the Internet are small, you wish to guard against that. The solution is to create the checksum file
named mydata.sum and place that on your homepage. Your colleagues need type nothing different,
but now Stata will verify that all goes well. When they use the file, they will see either

. use http://www.myuni.edu/department/~joe/mydata
(important data from joe)

40 checksum — Calculate checksum of file

or

. use http://www.myuni.edu/department/~joe/mydata

file transmission error (checksums do not match)
http://www.myuni.edu/department/~joe/mydata.dta not downloaded
r(639);

To make the checksum file, change to the directory where the file is located and type

. checksum mydata.dta, save
Checksum for mydata.dta = 263508742, size = 4052
file mydata.sum saved

> Example 2

Let’s use checksum on the auto dataset that is shipped with Stata. We will load the dataset and
save it to our current directory.

. use http://www.stata-press.com/data/r14/auto
(1978 Automobile Data)

. save auto
file auto.dta saved

. checksum auto.dta
Checksum for auto.dta = 3073327115, size = 12207

We see the report produced by checksum, but we decide to save this information to a file.

. checksum auto.dta, save

. type auto.sum
1 12207 3073327115

The first number is the version number (possibly used for future releases). The second number is
the file’s size in bytes, which can be used with the checksum value to ensure that the file transferred
without corruption. The third number is the checksum value. Although two different files can have
the same checksum value, two files with the same checksum value almost certainly could not have
the same file size.

This example is admittedly artificial. Typically, you would use checksum to verify that no file
transmission error occurred during a web download. If you want to verify that your own data are
unchanged, using datasignature is better; see [D] datasignature.

4

Stored results
checksum stores the following in r():

Scalars
r(version) checksum version number
r(filelen) length of file in bytes
r(checksum) checksum value

checksum — Calculate checksum of file 41

Also see

[D] use — Load Stata dataset
[R] net — Install and manage user-written additions from the Internet

[D] datasignature — Determine whether data have changed

Title

clear — Clear memory

Description

Description

Quick start

Syntax Remarks and examples Also see

clear, by itself, removes data and value labels from memory and is equivalent to typing

. version 14
. drop _all
. label drop _all

(see [D] drop)
(see [D] label)

clear mata removes Mata functions and objects from memory and is equivalent to typing

. version 14
. mata: mata clear

(see [M-3] mata clear)

clear results eliminates stored results from memory and is equivalent to typing

. version 14

. return clear

. ereturn clear

. sreturn clear

. _return drop _all

(see [P] return)
(see [P] return)
(see [P] return)
(see [P] _return)

clear matrix eliminates from memory all matrices created by Stata’s matrix command; it does
not eliminate Mata matrices from memory. clear matrix is equivalent to typing

. version 14

. return clear

. ereturn clear

. sreturn clear

. _return drop _all

. matrix drop _all

. estimates drop _all

(see [P] return)

(see [P] return)

(see [P] return)

(see [P] _return)

(see [P] matrix utility)
[

(see [R] estimates)

clear programs eliminates all programs from memory and is equivalent to typing

. version 14
. program drop _all

(see [P] program)

clear ado eliminates all automatically loaded ado-file programs from memory (but not programs
defined interactively or by do-files). It is equivalent to typing

. version 14
. program drop _allado

(see [P] program)

clear all and clear * are synonyms. They remove all data, value labels, matrices, scalars,
constraints, clusters, stored results, sersets, and Mata functions and objects from memory. They also
close all open files and postfiles, clear the class system, close any open Graph windows and dialog
boxes, drop all programs from memory, and reset all timers to zero. They are equivalent to typing

. version 14

. drop _all

. label drop _all

. matrix drop _all

. scalar drop _all

. constraint drop _all

(see [D] drop)

(see [D] label)

(see [P] matrix utility)
(see [P] scalar)

(see [R] constraint)

42

clear — Clear memory 43

. cluster drop _all (see [MV] cluster utility)
. file close _all (see [P] file)

. postutil clear (see [P] postfile)

. _return drop _all (see [P] _return)

. discard (see [P] discard)

. program drop _all (see [P] program)

. timer clear (see [P] timer)

. mata: mata clear (see [M-3] mata clear)

Quick start

Remove data and value labels from memory
clear

Remove Stata matrices from memory
clear matrix

Remove Mata matrices, Mata objects, and Mata functions from memory
clear mata

Remove all programs from memory
clear programs

As above, but only programs automatically loaded by ado-files
clear ado

Remove results stored in r(), e(), and s() from memory
clear results

Remove all the above and constraints, clusters, and sersets; reset timers to O; clear the class system;
and close all open files, graph windows, and dialog boxes

clear all

Same as above
clear *

Syntax
clear

clear [mata|results|matrix|programs|ado]

clear [all|]

Remarks and examples

You can clear the entire dataset without affecting macros and programs by typing clear. You can
also type clear all. This command has the same result as clear by itself but also clears matrices,
scalars, constraints, clusters, stored results, sersets, Mata, the class system, business calendars, and
programs; closes all open files and postfiles; closes all open Graph windows and dialog boxes; and
resets all timers to zero.

44 clear — Clear memory

> Example 1

We load the bpwide dataset to correct a mistake in the data.

. use http://www.stata-press.com/data/r14/bpwide
(fictional blood pressure data)

. list in 1/5

patient sex agegrp bp_bef~e bp_after

1 1 Male 30-45 143 153
2 2 Male 30-45 163 170
3 3 Male 30-45 1563 168
4 4 Male 30-45 153 142
5 5 Male 30-45 146 141

. replace bp_after = 145 in 3
(1 real change made)

We made another mistake. We meant to change the value of bp_after in observation 4. It is easiest
to begin again.

. list in 1/5

patient sex agegrp bp_bef~e bp_after

1 1 Male 30-45 143 153
2 2 Male 30-45 163 170
3 3 Male 30-45 153 168
4 4 Male 30-45 153 142
5 5 Male 30-45 146 141

. replace bp_after = 145 in 3
(1 real change made)

Also see
[D] drop — Drop variables or observations
[P] discard — Drop automatically loaded programs
[U] 11 Language syntax

[U] 13 Functions and expressions

Title

clonevar — Clone existing variable

Description Quick start Menu Syntax
Remarks and examples Acknowledgments Also see

Description

clonevar generates newvar as an exact copy of an existing variable, varname, with the same

storage type, values, and display format as varname. varname’s variable label, value labels, notes,
and characteristics will also be copied.

Quick start

Copy contents, label, and value label of v1 to newvil
clonevar newvl = vl

Copy observations from v2 to newv2 where v2 is less than 30
clonevar newv2 = v2 if v2 < 30

Copy the first 20 observations of v3 to newv3
clonevar newv3 = v3 in £/20

Same as above

clonevar newv3 v3 in 1/20

Menu

Data > Create or change data > Other variable-creation commands > Clone existing variable

Syntax

clonevar newvar = varname [i}"] [m]

Remarks and examples
clonevar has various possible uses. Programmers may desire that a temporary variable appear

to the user exactly like an existing variable. Interactively, you might want a slightly modified copy
of an original variable, so the natural starting point is a clone of the original.

45

46 clonevar — Clone existing variable

> Example 1
We have a dataset containing information on modes of travel. These data contain a variable named
mode that identifies each observation as a specific mode of travel: air, train, bus, or car.

. use http://www.stata-press.com/data/r14/travel

. describe mode

storage display value

variable name type format label variable label
mode byte %8.0g travel travel mode alternatives
. label list travel
travel:

1 air

2 train

3 bus

4 car

To create an identical variable identifying only observations that contain air or train, we could use
clonevar with an if qualifier.

. clonevar airtrain = mode if mode == | mode == 2

(420 missing values generated)

. describe mode airtrain

storage display value
variable name type format label variable label
mode byte %8.0g travel travel mode alternatives
airtrain byte %8.0g travel travel mode alternatives

. list mode airtrain in 1/5

mode airtrain

1. air air
2. train train
3. bus

4. car .
5. air air

The new airtrain variable has the same storage type, display format, value label, and variable
label as mode. If mode had any characteristics or notes attached to it, they would have been applied
to the new airtrain variable, too. The only differences in the two variables are their names and
values for bus and car.

N

Q Technical note

The if qualifier used with the clonevar command in example 1 referred to the values of mode
as 1 and 2. Had we wanted to refer to the values by their associated value labels, we could have

typed

. clonevar airtrain = mode if mode == "air":travel | mode == "train":travel

For more details, see [U] 13.11 Label values.

clonevar — Clone existing variable 47

Acknowledgments

clonevar was written by Nicholas J. Cox of the Department of Geography at Durham University,
UK, and coeditor of the Stata Journal and author of Speaking Stata Graphics. He in turn thanks
Michael Blasnik of M. Blasnik & Associates and Ken Higbee of StataCorp for very helpful comments
on a precursor of this command.

Also see
[D] generate — Create or change contents of variable

[D] separate — Create separate variables

http://www.stata-journal.com/
http://www.stata-press.com/books/speaking-stata-graphics/

Title

codebook — Describe data contents

Description Quick start Menu Syntax
Options Remarks and examples Stored results References
Also see

Description

codebook examines the variable names, labels, and data to produce a codebook describing the
dataset.

Quick start

Codebook of all variables in the dataset

codebook

Codebook of variables v1, v2, and v3
codebook v1 v2 v3

Codebook of all variables starting with code
codebook codex*

Include dataset name, last saved date, and variable notes in the codebook
codebook, header notes

Report problems with labels, constant-valued variables, embedded spaces and binary O in string
variables, and noninteger date variables

codebook, problems

Codebook for dataset with English and Spanish variable and value labels using label languages en
and es

codebook, languages(en es)

Menu

Data > Describe data > Describe data contents (codebook)

48

codebook — Describe data contents 49

Syntax

codebook [vurlist] [zf] [m] [, options}

options Description
Options
all print complete report without missing values
header print dataset name and last saved date
notes print any notes attached to variables
mv report pattern of missing values
tabulate (#) set tables/summary statistics threshold; default is tabulate(9)
problems report potential problems in dataset
detail display detailed report on the variables; only with problems
compact display compact report on the variables
dots display a dot for each variable processed; only with compact
Languages

languages [(namelist)] use with multilingual datasets; see [D] label language for details

Options

all is equivalent to specifying the header and notes options. It provides a complete report, which
excludes only performing mv.

header adds to the top of the output a header that lists the dataset name, the date that the dataset
was last saved, etc.

notes lists any notes attached to the variables; see [D] notes.

mv specifies that codebook search the data to determine the pattern of missing values. This is a
CPU-intensive task.

tabulate (#) specifies the number of unique values of the variables to use to determine whether a
variable is categorical or continuous. Missing values are not included in this count. The default is
9; when there are more than nine unique values, the variable is classified as continuous. Extended
missing values will be included in the tabulation.

problems specifies that a summary report is produced describing potential problems that have been
diagnosed:

e Variables that are labeled with an undefined value label

Incompletely value-labeled variables

Variables that are constant, including always missing

e Leading, trailing, and embedded spaces in string variables

Embedded binary 0 (\0) in string variables
e Noninteger-valued date variables

See the discussion of these problems and advice on overcoming them following example 5.

50 codebook — Describe data contents

detail may be specified only with the problems option. It specifies that the detailed report on the
variables not be suppressed.

compact specifies that a compact report on the variables be displayed. compact may not be specified
with any options other than dots.

dots specifies that a dot be displayed for every variable processed. dots may be specified only with
compact.

Languages

languages[(namelist)] is for use with multilingual datasets; see [D] label language. It indicates
that the codebook pertains to the languages in namelist or to all defined languages if no such
list is specified as an argument to languages(). The output of codebook lists the data label
and variable labels in these languages and which value labels are attached to variables in these
languages.

Problems are diagnosed in all of these languages, as well. The problem report does not provide
details in which language problems occur. We advise you to rerun codebook for problematic
variables; specify detail to produce the problem report again.

If you have a multilingual dataset but do not specify languages(), all output, including the
problem report, is shown in the “active” language.

Remarks and examples

codebook, without arguments, is most usefully combined with log to produce a printed listing
for enclosure in a notebook documenting the data; see [U] 15 Saving and printing output—Ilog files.
codebook is, however, also useful interactively, because you can specify one or a few variables.

> Example 1

codebook examines the data in producing its results. For variables that codebook thinks are
continuous, it presents the mean; the standard deviation; and the 10th, 25th, 50th, 75th, and 90th
percentiles. For variables that it thinks are categorical, it presents a tabulation. In part, codebook
makes this determination by counting the number of unique values of the variable. If the number is
nine or fewer, codebook reports a tabulation; otherwise, it reports summary statistics.

codebook distinguishes the standard missing values (.) and the extended missing values (.a
through .z, denoted by .x). If extended missing values are found, codebook reports the number
of distinct missing value codes that occurred in that variable. Missing values are ignored with the
tabulate option when determining whether a variable is treated as continuous or categorical.

codebook — Describe data contents 51

. use http://www.stata-press.com/data/r14/educ3

(ccdb46, 52-54)

. codebook fips division, all

Dataset:

Last saved:

Label:

Number of variables:
Number of observations:
Size:

_dta:

http://www.stata-press.com/data/r14/educ3.dta
6 Mar 2014 22:20

ccdb46, 52-54

42

956

145,312 bytes ignoring labels, etc.

1. confirmed data with steve on 7/22

fips state/place code
type: numeric (long)
range: [10060,560050] units: 1
unique values: 956 missing .: 0/956
mean: 256495
std. dev: 156998
percentiles: 10% 25% 50% 75% 90%
61462 120426 252848 391360 482530
division Census Division
type: numeric (int)
label: division
range: [1,9] units: 1
unique values: 9 missing .: 4/956
unique mv codes: 2 missing .*: 2/956
tabulation: Freq. Numeric Label
69 1 N. Eng.
97 2 Mid Atl
202 3 E.N.C.
78 4 W.N.C.
115 5 S. Atl.
46 6 E.S.C.
89 7 W.s.C
59 8 Mountain
195 9 Pacific
4 .
2 .a

Because division has nine unique nonmissing values, codebook reported a tabulation. If divi-
sion had contained one more unique nonmissing value, codebook would have switched to reporting
summary statistics, unless we had included the tabulate (#) option.

N

52 codebook — Describe data contents

> Example 2

The mv option is useful. It instructs codebook to search the data to determine patterns of missing

values. Different kinds of missing values are not distinguished in the patterns.

. use http://www.stata-press.com/data/ri14/citytemp

(City Temperature Data)

. codebook cooldd heatdd tempjan tempjuly, mv

cooldd

Cooling degree days

type:
range:
unique values:

mean:
std. dev:

percentiles:

missing values:

numeric (int)

[0,4389]
438
1240.41
937.668
10% 25%
411 615

units:
missing .:

50%
940

heatdd==mv <-> cooldd==mv
tempjan==mv --> cooldd==mv
tempjuly==mv --> cooldd==mv

1

3/956
75% 90%
1566 2761

heatdd

Heating degree days

type:
range:
unique values:

mean:
std. dev:

percentiles:

missing values:

numeric (int)

[0,10816]
471
4425 .53
2199.6
10% 25%
1510 2460

units:
missing .:

50%
4950

cooldd==mv <-> heatdd==mv
tempjan==mv --> heatdd==mv
tempjuly==mv --> heatdd==mv

1

3/956
75% 90%
6232 6919

tempjan

Average

January temperature

type:
range:
unique values:

mean:
std. dev:

percentiles:

missing values:

numeric (float)

[2.2,72.6]
310
35.749
14.1881
10% 25%
20.2 25.1

units:
missing .:

507%
31.3

tempjuly==mv <-> tempjan==mv

.1

2/956
75% 90%
47.8 55.1

codebook — Describe data contents 53

tempjuly Average July temperature

type: numeric (float)
range: [58.1,93.6] units: .1
unique values: 196 missing .: 2/956

mean: 75.0538
std. dev: 5.49504

percentiles: 10% 25% 50% 75% 90%
68.8 71.8 74.25 78.7 82.3
missing values: tempjan==mv <-> tempjuly==mv

codebook reports that if tempjan is missing, tempjuly is also missing, and vice versa. In the output
for the cooldd variable, codebook also reports that the pattern of missing values is the same for
cooldd and heatdd. In both cases, the correspondence is indicated with “<->".

For cooldd, codebook also states that “tempjan==mv --> cooldd==mv”. The one-way arrow
means that a missing tempjan value implies a missing cooldd value but that a missing cooldd
value does not necessarily imply a missing tempjan value. q

Another feature of codebook—this one for numeric variables—is that it can determine the units
of the variable. For instance, in the example above, tempjan and tempjuly both have units of 0.1,
meaning that temperature is recorded to tenths of a degree. codebook handles precision considerations
in making this determination (tempjan and tempjuly are floats; see [U] 13.12 Precision and
problems therein). If we had a variable in our dataset recorded in 100s (for example, 21,500 or
36,800), codebook would have reported the units as 100. If we had a variable that took on only
values divisible by 5 (5, 10, 15, etc.), codebook would have reported the units as 5.

> Example 3

We can use the 1abel language command (see [D] label language) and the 1abel command (see
[D] label) to create German value labels for our auto dataset. These labels are reported by codebook:
. use http://www.stata-press.com/data/r14/auto
(1978 Automobile Data)

. label language en, rename
(language default renamed en)

. label language de, new
(language de now current language)

. label data "1978 Automobile Daten"
. label variable foreign "Art Auto"
. label values foreign origin_de

. label define origin_de O "Innen" 1 "Ausl&ndish"

54 codebook — Describe data contents

. codebook foreign

foreign Art Auto
type: numeric (byte)
label: origin_de
range: [0,1] units: 1
unique values: 2 missing .: 0/74
tabulation: Freq. Numeric Label
52 0 Innen
22 1 Ausléndish
. codebook foreign, languages(en de)
foreign in en: Car type
in de: Art Auto
type: numeric (byte)
label in en: origin
label in de: origin_de
range: [0,1] units: 1
unique values: 2 missing .: 0/74
tabulation: Freq. Numeric origin origin_de
52 0 Domestic Innen
22 1 Foreign Ausléndish

With the languages() option, the value labels are shown in the specified active and available

languages.

> Example 4

d

codebook, compact summarizes the variables in your dataset, including variable labels. It is an
alternative to the summarize command.

. use http://www.stata-press.com/data/r14/auto

(1978 Automobile Data)

. codebook, compact

Variable Obs Unique Mean Min Max Label

make 74 74 . . . Make and Model

price 74 74 6165.257 3291 15906 Price

mpg 74 21 21.2973 12 41 Mileage (mpg)

rep78 69 5 3.405797 1 5 Repair Record 1978
headroom 74 8 2.993243 1.5 5 Headroom (in.)

trunk 74 18 13.75676 5 23 Trunk space (cu. ft.)
weight 74 64 3019.459 1760 4840 Weight (1bs.)

length 74 47 187.9324 142 233 Length (in.)

turn 74 18 39.64865 31 51 Turn Circle (ft.)
displacement 74 31 197.2973 79 425 Displacement (cu. in.)
gear_ratio 74 36 3.014865 2.19 3.89 Gear Ratio

foreign 74 2 .2972973 0 1 Car type

codebook — Describe data contents 55

. summarize

Variable Obs Mean Std. Dev. Min Max

make 0
price 74 6165.257 2949.496 3291 15906
mpg 74 21.2973 5.785503 12 41
rep78 69 3.405797 .9899323 1 5
headroom 74 2.993243 .8459948 1.5 5
trunk 74 13.75676 4.277404 5 23
weight 74 3019.459 777.1936 1760 4840
length 74 187.9324 22.26634 142 233
turn 74 39.64865 4.399354 31 51
displacement 74 197.2973 91.83722 79 425
gear_ratio 74 3.014865 .4562871 2.19 3.89
foreign 74 .2972973 .4601885 0 1

N
> Example 5

When codebook determines that neither a tabulation nor a listing of summary statistics is appropriate,
for instance, for a string variable or for a numeric variable taking on many labeled values, it reports
a few examples instead.

. use http://www.stata-press.com/data/r14/funnyvar

. codebook name

name (unlabeled)

type: string (strb5), but longest is str3

unique values: 10 missing "": 0/10
examples: "1 O"
II3II
ngn
Il7l|

warning: variable has embedded blanks

codebook is also on the lookout for common problems that might cause you to make errors when
dealing with the data. For string variables, this includes leading, embedded, and trailing blanks and
embedded binary 0 (\0). In the output above, codebook informed us that name includes embedded
blanks. If name had leading or trailing blanks, it would have mentioned that, too.

When variables are value labeled, codebook performs two checks. First, if a value label labname
is associated with a variable, codebook checks whether labname is actually defined. Second, it checks
whether all values are value labeled. Partial labeling of a variable may mean that the label was defined
incorrectly (for instance, the variable has values 0 and 1, but the value label maps 1 to “male” and 2
to “female”) or that the variable was defined incorrectly (for example, a variable gender with three
values). codebook checks whether date variables are integer valued.

If the problems option is specified, codebook does not provide detailed descriptions of each
variable but reports only the potential problems in the data.

56

codebook — Describe data contents

. codebook, problems

Potential problems in dataset
> funnyvar.dta

potential problem

http://www.stata-press.com/data/r14/

variables

constant (or all missing) vars
vars with nonexisting label
incompletely labeled vars

str# vars that may be compressed
string vars with leading blanks

string vars with trailing blanks

string vars with embedded blanks
string vars with embedded \0
noninteger-valued date vars

human planet
educ
gender
name address city country planet
city country
planet
name address
mugshot
birthdate

d

In the example above, codebook, problems reported various potential problems with the dataset.
These problems include

e Constant variables, including variables that are always missing

Variables that are constant, taking the same value in all observations, or that are always
missing, are often superfluous. Such variables, however, may also indicate problems.
For instance, variables that are always missing may occur when importing data with
an incorrect input specification. Such variables may also occur if you generate a new
variable for a subset of the data, selected with an expression that is false for all
observations.

Advice: Carefully check the origin of constant variables. If you are saving a constant
variable, be sure to compress the variable to use minimal storage.

Variables with nonexisting value labels

Stata treats value labels as separate objects that can be attached to one or more variables.
A problem may arise if variables are linked to value labels that are not yet defined or
if an incorrect value label name was used.

Advice: Attach the correct value label, or 1abel define the value label. See [D] label.

Incompletely labeled variables

A variable is called “incompletely value labeled” if the variable is value labeled but no
mapping is provided for some values of the variable. An example is a variable with
values 0, 1, and 2 and value labels for 1, 2, and 3. This situation usually indicates an
error, either in the data or in the value label.

Advice: Change either the data or the value label.

String variables that may be compressed

The storage space used by a string variable is determined by its data type; see [D] data
types. For instance, the storage type str20 indicates that 20 bytes are used per
observation. If the declared storage type exceeds your requirements, memory and disk
space is wasted.

Advice: Use compress to store the data as compactly as possible.

String variables with leading or trailing blanks

In most applications, leading and trailing spaces do not affect the meaning of variables
but are probably side effects from importing the data or from data manipulation. Spurious

codebook — Describe data contents 57

leading and trailing spaces force Stata to use more memory than required. In addition,
manipulating strings with leading and trailing spaces is harder.

Advice: Remove leading and trailing blanks from a string variable s by typing
replace s = strtrim(s)
See [FN] String functions.
e String variables with embedded blanks

String variables with embedded blanks are often appropriate; however, sometimes they
indicate problems importing the data.

Advice: Verify that blanks are meaningful in the variables.
e String variables with embedded binary 0 (\0)

String variables with embedded binary 0 (\O) are allowed; however, caution should be
used when working with them as some commands and functions may only work with
the plain-text portion of a binary string, ignoring anything after the first binary O.

Advice: Be aware of binary strings in your data and whether you are manipulating them
in a way that is only appropriate with plain-text values.

e Noninteger-valued date variables

Stata’s date and time formats were designed for use with integer values but will work
with noninteger values.

Advice: Carefully inspect the nature of the noninteger values. If noninteger values in a
variable are the consequence of roundoff error, you may want to round the variable to
the nearest integer.

replace time = round(time)
Of course, more problems not reported by codebook are possible. These might include
e Numerical data stored as strings

After importing data into Stata, you may discover that some string variables can actually
be interpreted as numbers. Stata can do much more with numerical data than with
string data. Moreover, string representation usually makes less efficient use of computer
resources. destring will convert string variables to numeric.

A string variable may contain a “field” with numeric information. An example is an
address variable that contains the street name followed by the house number. The Stata
string functions can extract the relevant substring.

e Categorical variables stored as strings

Most statistical commands do not allow string variables. Moreover, string variables that
take only a limited number of distinct values are an inefficient storage method. Use
value-labeled numeric values instead. These are easily created with encode.

e Duplicate observations

See [D] duplicates.

58 codebook — Describe data contents

e Observations that are always missing

Drop observations that are missing for all variables in varlist using the rownonmiss ()
egen function:

egen nobs = rownonmiss (varlist)
drop if nobs==0

Specify _all for varlist if only observations that are always missing should be dropped.

Stored results

codebook stores the following lists of variables with potential problems in r():

Macros
r(cons) constant (or missing)
r(labelnotfound) undefined value labeled
r(notlabeled) value labeled but with unlabeled categories
r(str_type) compressible
r(str_leading) leading blanks
r(str_trailing) trailing blanks

r(str_embedded) embedded blanks
r(str_embedded0) embedded binary 0 (\O)
r(realdate) noninteger dates

References
Cox, N. J. 2008. Speaking Stata: Distinct observations. Stata Journal 8: 557-568.
——. 2012. Software Updates: Speaking Stata: Distinct observations. Stata Journal 12: 352.
Long, J. S. 2009. The Workflow of Data Analysis Using Stata. College Station, TX: Stata Press.

Also see

[D] describe — Describe data in memory or in file

[D] ds — List variables matching name patterns or other characteristics
[D] inspect — Display simple summary of data’s attributes

[D] labelbook — Label utilities

[D] notes — Place notes in data

[D] split — Split string variables into parts

[U] 15 Saving and printing output—Ilog files

http://www.stata-journal.com/sjpdf.html?articlenum=dm0042
http://www.stata-journal.com/sjpdf.html?articlenum=up0036
http://www.stata-press.com/books/wdaus.html

Title

collapse — Make dataset of summary statistics

Description Quick start Menu Syntax
Options Remarks and examples Acknowledgment Also see
Description

collapse converts the dataset in memory into a dataset of means, sums, medians, etc. clist must
refer to numeric variables exclusively.

Note: See [D] contract if you want to collapse to a dataset of frequencies.

Quick start

Replace dataset in memory with means of v1 and v2
collapse vl v2

As above, but calculate statistics separately by each level of catvar
collapse vl v2, by(catvar)

Dataset of mean, standard deviation, and standard error of the mean of vi1
collapse (mean) meanl=vl (sd) sdl=vl (semean) seml=vl

Mean and standard error of the mean for binomial v2
collapse (mean) mean2=v2 (sebinomial) sem2=v2

Frequency, median, and interquartile range of v1
collapse (count) freg=vl (p50) p50=vi (iqr) iqr=vi

Weighted and unweighted sum of v2 using frequency weight wvar
collapse (sum) weighted=v2 (rawsum) unweighted=v2 [fweight=wvar]

Menu

Data > Create or change data > Other variable-transformation commands > Make dataset of means, medians, etc.

59

60 collapse — Make dataset of summary statistics

Syntax
collapse clist [zf} [m} [weight] [, options]
where clist is either

[(stat)} varlist [[(stat)]]

[(stat)} target_var=varname [targel_var=varname] [[(stat)]]

or any combination of the varlist and target_var forms, and stat is one of

mean means (default) sum

median medians rawsum

pl Ist percentile

p2 2nd percentile

. 3rd—49th percentiles count

p50 50th percentile (same as median) percent

. 51st—97th percentiles max

p98 98th percentile min

p99 99th percentile igr

sd standard deviations first

semean standard error of the mean last
(sd/sqrt(n)) firstnm

sebinomial standard error of the mean, binomial lastnm

(sqrt(p(1-p)/n))
sepoisson standard error of the mean, Poisson
(sqrt (mean))

If stat is not specified, mean is assumed.

sums

sums, ignoring optionally specified weight
except observations with a weight of
zero are excluded

number of nonmissing observations

percentage of nonmissing observations

maximums

minimums

interquartile range

first value

last value

first nonmissing value

last nonmissing value

options Description
Options
by (varlist) groups over which stat is to be calculated
cw casewise deletion instead of all possible observations
fast do not restore the original dataset should the user press Break; programmer’s
command

varlist and varname in clist may contain time-series operators; see [U] 11.4.4 Time-series varlists.

aweights, fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight, and see Weights below. pweights
may not be used with sd, semean, sebinomial, or sepoisson. iweights may not be used with semean,
sebinomial, or sepoisson. aweights may not be used with sebinomial or sepoisson.

fast does not appear in the dialog box.

Examples:

. collapse age educ income, by(state)

. collapse (mean) age educ (median) income, by(state)

. collapse (mean) age educ income (median) medinc=income, by(state)

. collapse (p25) gpa [fw=number], by(year)

collapse — Make dataset of summary statistics 61

Options
. [options |

by (varlist) specifies the groups over which the means, etc., are to be calculated. If this option is
not specified, the resulting dataset will contain 1 observation. If it is specified, varlist may refer
to either string or numeric variables.

cw specifies casewise deletion. If cw is not specified, all possible observations are used for each
calculated statistic.

The following option is available with collapse but is not shown in the dialog box:

fast specifies that collapse not restore the original dataset should the user press Break. fast is
intended for use by programmers.

Remarks and examples

collapse takes the dataset in memory and creates a new dataset containing summary statistics
of the original data. collapse adds meaningful variable labels to the variables in this new dataset.
Because the syntax diagram for collapse makes using it appear more complicated than it is,
collapse is best explained with examples.

Remarks are presented under the following headings:

Introductory examples
Variablewise or casewise deletion
Weights

A final example

Introductory examples

> Example 1

Consider the following artificial data on the grade-point average (gpa) of college students:
. use http://www.stata-press.com/data/r14/college
. describe

Contains data from http://www.stata-press.com/data/ri4/college.dta

obs: 12

vars: 4 3 Jan 2014 12:05

size: 120

storage display value
variable name type format label variable label
gpa float %9.0g gpa for this year
hour int %9.0g Total academic hours
year int %9.0g 1 = freshman, 2 = sophomore, 3 =
junior, 4 = senior

number int %9.0g number of students

Sorted by: year

62 collapse — Make dataset of summary statistics

. list, sep(4)

gpa hour year number
1. 3.2 30 1 3
2. 3.5 34 1 2
3. 2.8 28 1 9
4. 2.1 30 1 4
5. 3.8 29 2 3
6. 2.5 30 2 4
7. 2.9 35 2 5
8. 3.7 30 3 4
9. 2.2 35 3 2
10 3.3 33 3 3
11. 3.4 32 4 5
12. 2.9 31 4 2

To obtain a dataset containing the 25th percentile of gpa’s for each year, we type
. collapse (p25) gpa [fw=number], by(year)

We used frequency weights.

Next we want to create a dataset containing the mean of gpa and hour for each year. We do not
have to type (mean) to specify that we want the mean because the mean is reported by default.

. use http://www.stata-press.com/data/ri14/college, clear
. collapse gpa hour [fw=number], by(year)

. list
year gpa hour
1 1 2.788889 29.44444
2 2 2.991667 31.83333
3 3 3.233333 32.11111
4 4 3.257143 31.71428

Now we want to create a dataset containing the mean and median of gpa and hour, and we want
the median of gpa and hour to be stored as variables medgpa and medhour, respectively.

. use http://www.stata-press.com/data/r14/college, clear

. collapse (mean) gpa hour (median) medgpa=gpa medhour=hour [fw=num], by(year)

. list
year gpa hour medgpa medhour
1 1 2.788889 29.44444 2.8 29
2 2 2.991667 31.83333 2.9 30
3 3 3.233333 32.11111 3.3 33
4 4 3.257143 31.71428 3.4 32

Here we want to create a dataset containing a count of gpa and hour and the minimums of
gpa and hour. The minimums of gpa and hour will be stored as variables mingpa and minhour,
respectively.

collapse — Make dataset of summary statistics

63

. use http://www.stata-press.com/data/r14/college, clear

. collapse (count) gpa hour (min) mingpa=gpa minhour=hour [fw=num], by(year)

. list
year gpa hour mingpa minhour
1 1 18 18 2.1 28
2 2 12 12 2.5 29
3 3 9 9 2.2 30
4 4 7 7 2.9 31

Now we replace the values of gpa in 3 of the observations with missing values.

. use http://www.stata-press.com/data/r14/college, clear

. replace gpa = . in 2

(3 real changes made, 3 to missing)

. list, sep(4)

/4

gpa hour year number
1. 3.2 30 1 3
2. 34 1 2
3. 28 1 9
4. 30 1 4
5. 3.8 29 2 3
6. 2.5 30 2 4
7. 2.9 35 2 5
8. 3.7 30 3 4
9. 2.2 35 3 2
10. 3.3 33 3 3
11. 3.4 32 4 5
12. 2.9 31 4 2

If we now want to list the data containing the mean of gpa and hour for each year, collapse

uses all observations on hour for year = 1, even though gpa is missing for observations 1-3.

. collapse gpa hour [fw=num], by(year)

. list
year gpa hour
1 1 3.2 29.44444
2 2 2.991667 31.83333
3 3 3.233333 32.11111
4 4 3.257143 31.71428

64 collapse — Make dataset of summary statistics

If we repeat this process but specify the cw option, collapse ignores all observations that have
missing values.

. use http://www.stata-press.com/data/r14/college, clear

. replace gpa = . in 2/4
(3 real changes made, 3 to missing)

. collapse (mean) gpa hour [fw=num], by(year) cw

. list

year gpa hour
1 1 3.2 30
2 2 2.991667 31.83333
3 3 3.233333 32.11111
4 4 3.257143 31.71428

d
> Example 2

We have individual-level data from a census in which each observation is a person. Among other
variables, the dataset contains the numeric variables age, educ, and income and the string variable
state. We want to create a 50-observation dataset containing the means of age, education, and
income for each state.

. collapse age educ income, by(state)
The resulting dataset contains means because collapse assumes that we want means if we do not
specify otherwise. To make this explicit, we could have typed

. collapse (mean) age educ income, by(state)

Had we wanted the mean for age and educ and the median for income, we could have typed

. collapse (mean) age educ (median) income, by(state)

or if we had wanted the mean for age and educ and both the mean and the median for income, we
could have typed

. collapse (mean) age educ income (median) medinc=income, by(state)

This last dataset will contain three variables containing means—age, educ, and income—and one
variable containing the median of income—medinc. Because we typed (median) medinc=income,
Stata knew to find the median for income and to store those in a variable named medinc. This
renaming convention is necessary in this example because a variable named income containing the
mean is also being created.

N

collapse — Make dataset of summary statistics 65

Variablewise or casewise deletion

> Example 3

Let’s assume that in our census data, we have 25,000 persons for whom age is recorded but only
15,000 for whom income is recorded; that is, income is missing for 10,000 observations. If we
want summary statistics for age and income, collapse will, by default, use all 25,000 observations
when calculating the summary statistics for age. If we prefer that collapse use only the 15,000
observations for which income is not missing, we can specify the cw (casewise) option:

. collapse (mean) age income (median) medinc=income, by(state) cw

Weights

collapse allows all four weight types; the default is aweights. Weight normalization affects
only the sum, count, percent, sd, semean, and sebinomial statistics.

Here are the definitions for count, percent, and sum with weights:

count:
unweighted: _N, the number of physical observations
aweight: _N, the number of physical observations
fweight, iweight, pweight: W =) wj, the sum of the user-specified weights
percent:
unweighted: (_n/_N) x 100, the percentage of physical observations
awveight: (_n/_N) x 100, the percentage of physical observations
fweight, iweight, pweight: W = (w;/>_ w;) x 100, the percentage of the user-specified
weights
sum:
unweighted: Z z;, the sum of the variable
aweight: > v;Tj; v; = (w; normalized to sum to _N)

fweight, iweight, pweight: » w;x;

The sd statistic with weights returns the square root of the bias-corrected variance, which is
based on the factor \/N/(N — 1), where N is the number of observations. Statistics sd, semean,
sebinomial, and sepoisson are not allowed with pweighted data. Otherwise, the statistic is
changed by the weights through the computation of the count (/V), as outlined above.

For instance, consider a case in which there are 25 physical observations in the dataset and
a weighting variable that sums to 57. In the unweighted case, the weight is not specified, and
N = 25. In the analytically weighted case, NV is still 25; the scale of the weight is irrelevant. In the
frequency-weighted case, however, N = 57, the sum of the weights.

The rawsum statistic with aweights ignores the weight, with one exception: observations with
zero weight will not be included in the sum.

66 collapse — Make dataset of summary statistics

> Example 4

Using our same census data, suppose that instead of starting with individual-level data and
aggregating to the state level, we started with state-level data and wanted to aggregate to the region
level. Also assume that our dataset contains pop, the population of each state.

To obtain unweighted means and medians of age and income, by region, along with the total
population, we could type

. collapse (mean) age income (median) medage=age medinc=income (sum) pop,
> by(region)

To obtain weighted means and medians of age and income, by region, along with the total
population and using frequency weights, we could type

. collapse (mean) age income (median) medage=age medinc=income (count) pop
> [fweight=popl, by(region)

Note: Specifying (sum) pop would not have worked because that would have yielded the pop-
weighted sum of pop. Specifying (count) age would have worked as well as (count) pop
because count merely counts the number of nonmissing observations. The counts here, however, are
frequency-weighted and equal the sum of pop.

To obtain the same mean and medians as above, but using analytic weights, we could type

. collapse (mean) age income (median) medage=age medinc=income (rawsum) pop
> [aweight=pop]l, by(region)

Note: Specifying (count) pop would not have worked because, with analytic weights, count would
count numbers of physical observations. Specifying (sum) pop would not have worked because sum
would calculate weighted sums (with a normalized weight). The rawsum function, however, ignores
the weights and sums only the specified variable, with one exception: observations with zero weight
will not be included in the sum. rawsum would have worked as the solution to all three cases.

A final example

> Example 5

We have census data containing information on each state’s median age, marriage rate, and divorce
rate. We want to form a new dataset containing various summary statistics, by region, of the variables:

collapse — Make dataset of summary statistics 67

. use http://www.stata-press.com/data/r14/censusb, clear
(1980 Census data by state)

. describe

Contains data from http://www.stata-press.com/data/r14/censusb5.dta

obs: 50 1980 Census data by state

vars: 7 6 Apr 2014 15:43

size: 1,700

storage display value

variable name type format label variable label

state stri4 %l14s State

state2 str2 %-2s Two-letter state abbreviation
region int %8.0g cenreg Census region
pop long %10.0g Population
median_age float %9.2f Median age

marriage_rate float %9.0g
divorce_rate float %9.0g

Sorted by: region

. collapse (median) median_age marriage divorce (mean) avgmrate=marriage
> avgdrate=divorce [aw=pop], by(region)

. list
region median~e marria~e divorc~e avgmrate avgdrate
1. NE 31.90 .0080657 .0035295 .0081472 .0035359
2. N Cntrl 29.90 .0093821 .0048636 .0096701 .004961
3. South 29.60 .0112609 .0065792 .0117082 .0059439
4. West 29.90 .0089093 .0056423 .0125199 .0063464
. describe

Contains data

obs: 4 1980 Census data by state

vars: 6

size: 88

storage display value

variable name type format label variable label
region int %8.0g cenreg Census region
median_age float %9.2f (p 50) median_age
marriage_rate float %9.0g (p 50) marriage_rate
divorce_rate float %9.0g (p 50) divorce_rate
avgmrate float %9.0g (mean) marriage_rate
avgdrate float %9.0g (mean) divorce_rate

Sorted by: region
Note: Dataset has changed since last saved.

Acknowledgment

We thank David Roodman for writing collapse2, which inspired several features in collapse.

68 collapse — Make dataset of summary statistics

Also see
[D] contract — Make dataset of frequencies and percentages
[D] egen — Extensions to generate
[D] statsby — Collect statistics for a command across a by list

[R] summarize — Summary statistics

Title

compare — Compare two variables

Description Quick start Menu Syntax Remarks and examples
Also see

Description

compare reports the differences and similarities between varname, and varnames.

Quick start

Describe differences in missing and defined values of v1 and v2
compare vl v2

As above, but only for observations where catvar is equal to 3
compare vl v2 if catvar==

As above, but for each level of catvar
by catvar: compare vl v2

Menu

Data > Data utilities > Compare two variables

Syntax

compare varnamey varnames [lf] [m]

by is allowed; see [D] by.

Remarks and examples

> Example 1

One of the more useful accountings made by compare is the pattern of missing values:

. use http://www.stata-press.com/data/r14/fullauto
(Automobile Models)

. compare rep77 rep78

difference

count minimum average maximum
rep77<rep78 16 -3 -1.3125 -1
rep77=rep78 43
rep77>rep78 7 1 1 1
jointly defined 66 -3 -.2121212 1
rep77 missing only 3
jointly missing 5
total 74

69

70 compare — Compare two variables

We see that both rep77 and rep78 are missing in 5 observations and that rep77 is also missing in
3 more observations.

N

Q Technical note

compare may be used with numeric variables, string variables, or both. When used with string
variables, the summary of the differences (minimum, average, maximum) is not reported. When used

with string and numeric variables, the breakdown by <, =, and > is also suppressed.
Q

Also see
[D] ¢f — Compare two datasets
[D] codebook — Describe data contents

[D] inspect — Display simple summary of data’s attributes

Title

compress — Compress data in memory

Description Quick start Menu Syntax Option Remarks and examples
Also see

Description

compress attempts to reduce the amount of memory used by your data.

Quick start

Reduce the amount of memory used by the current dataset
compress

As above, but only reduce memory used by v1 and v2
compress vl v2

Speed up compress for large datasets with strL-type variables but possibly reduce the amount of
memory saved
compress, nocoalesce

Menu

Data > Data utilities > Optimize variable storage

Syntax

compress [varlist} [, nocoalesce]

Option

nocoalesce specifies that compress not try to find duplicate values within stall variables in an
attempt to save memory. If nocoalesce is not specified, compress must sort the data by each
strL variable, which can be time consuming in large datasets.

Remarks and examples
compress reduces the size of your dataset by considering two things. First, it considers demoting

doubles to 1longs, ints, or bytes
floats to ints or bytes

longs to ints or bytes
ints to bytes
str#s to shorter str#s

strLs to str#s

71

72 compress — Compress data in memory

See [D] data types for an explanation of these storage types.

Second, it considers coalescing strLs within each strL variable. That is to say, if a strL variable
takes on the same value in multiple observations, compress can link those values to a single memory
location to save memory. To check for this, compress must sort the data on each strL variable.
You can use the nocoalesce option to tell compress not to take the time to perform this check.
If compress does check whether it can coalesce strL values, it will do whichever saves more
memory—coalescing strL values or demoting a strL to a str#—or it will do nothing if it cannot
save memory by changing a strL.

compress leaves your data logically unchanged but (probably) appreciably smaller. compress
never makes a mistake, results in loss of precision, or hacks off strings.

> Example 1

If you do not specify a varlist, compress considers demoting all the variables in your dataset, so
typing compress by itself is usually enough:
. use http://www.stata-press.com/data/r14/compxmp?2
(1978 Automobile Data)

. compress
variable mpg was float now byte
variable price was long now int
variable yenprice was double now long
variable weight was double now int
variable make was str26 now stri7
(1,776 bytes saved)

If there are no compression possibilities, compress does nothing. For instance, typing compress
again results in

. compress
(0 bytes saved)

Also see
[D] data types — Quick reference for data types

[D] recast — Change storage type of variable

Title

contract — Make dataset of frequencies and percentages

Description Quick start Menu Syntax
Options Remarks and examples Acknowledgments Reference
Also see

Description

contract replaces the dataset in memory with a new dataset consisting of all combinations of
varlist that exist in the data and a new variable that contains the frequency of each combination.

Quick start

Frequency of each combination of v1 and v2 saved in _freq
contract vl v2

As above, but name new frequency variable newf
contract vl v2, freq(newf)

Add percentage of total in newp
contract vl v2, freq(newf) percent(newp)

Add cumulative frequency newcf and cumulative percentage newcp

contract vl v2, freq(newf) percent(newp) cfreq(newcf) ///
cpercent (newcp)

Frequency of combinations excluding missing values
contract vl v2, nomiss

Add combinations with zero observations
contract vl v2, nomiss zero

Menu

Data > Create or change data > Other variable-transformation commands > Make dataset of frequencies

73

74 contract — Make dataset of frequencies and percentages

Syntax

contract varlist [z_’f] [in] [weight} [, options]

options Description
Options
freq(newvar) name of frequency variable; default is _freq
cfreq(newvar) create cumulative frequency variable
percent (newvar) create percentage variable
cpercent (newvar) create cumulative percentage variable
float generate percentage variables as type float
format (format) display format for new percentage variables; default is format (%8.2f)
zero include combinations with frequency zero
nomiss drop observations with missing values

fweights are allowed; see [U] 11.1.6 weight.

Options

freq(newvar) specifies a name for the frequency variable. If not specified, _freq is used.

cfreq(newvar) specifies a name for the cumulative frequency variable. If not specified, no cumulative
frequency variable is created.

percent (newvar) specifies a name for the percentage variable. If not specified, no percentage variable
is created.

cpercent (newvar) specifies a name for the cumulative percentage variable. If not specified, no
cumulative percentage variable is created.

float specifies that the percentage variables specified by percent() and cpercent() will be
generated as variables of type float. If float is not specified, these variables will be generated
as variables of type double. All generated variables are compressed to the smallest storage type
possible without loss of precision; see [D] compress.

format (format) specifies a display format for the generated percentage variables specified by
percent () and cpercent (). If format () is not specified, these variables will have the display
format %8.2f.

zero specifies that combinations with frequency zero be included.

nomiss specifies that observations with missing values on any variable in varlist be dropped. If
nomiss is not specified, all observations possible are used.

Remarks and examples

contract takes the dataset in memory and creates a new dataset containing all combinations of
varlist that exist in the data and a new variable that contains the frequency of each combination.

contract — Make dataset of frequencies and percentages 75

Sometimes you may want to collapse a dataset into frequency form. Several observations that have
identical values on one or more variables will be replaced by one such observation, together with the
frequency of the corresponding set of values. For example, in certain generalized linear models, the
frequency of some combination of values is the response variable, so you would need to produce that
response variable. The set of covariate values associated with each frequency is sometimes called a
covariate class or covariate pattern. Such collapsing is reversible for the variables concerned, because
the original dataset can be reconstituted by using expand (see [D] expand) with the variable containing
the frequencies of each covariate class.

> Example 1

Suppose that we wish to collapse auto2.dta to a set of frequencies of the variables rep78, which
takes values labeled “Poor”, “Fair”, “Average”, “Good”, and “Excellent”, and foreign, which takes
values labeled “Domestic” and “Foreign”.

. use http://www.stata-press.com/data/r14/auto2
(1978 Automobile Data)

. contract rep78 foreign

. list
rep78 foreign _freq
1. Poor Domestic 2
2. Fair Domestic 8
3. Average Domestic 27
4. Average Foreign 3
5. Good Domestic 9
6. Good Foreign 9
7. Excellent Domestic 2
8. Excellent Foreign 9
9. Domestic 4
10. Foreign 1

By default, contract uses the variable name _freq for the new variable that contains the
frequencies. If _freq is in use, you will be reminded to specify a new variable name via the freq()
option.

76 contract — Make dataset of frequencies and percentages

Specifying the zero option requests that combinations with frequency zero also be listed.

. use http://www.stata-press.com/data/r14/auto2, clear
(1978 Automobile Data)

. contract rep78 foreign, zero

. list

rep78 foreign _freq

1. Poor Domestic 2
2. Poor Foreign 0
3. Fair Domestic 8
4. Fair Foreign 0
5. Average Domestic 27
6. Average Foreign 3
7. Good Domestic 9
8. Good Foreign 9
9. Excellent Domestic 2
10. Excellent Foreign 9
11. . Domestic 4
12. . Foreign 1

d
Acknowledgments

contract was written by Nicholas J. Cox (1998) of the Department of Geography at Durham
University, UK, and coeditor of the Stata Journal and author of Speaking Stata Graphics. The cfreq(),
percent (), cpercent(), float, and format() options were written by Roger Newson of the
Imperial College London.

Reference

Cox, N. J. 1998. dm59: Collapsing datasets to frequencies. Stata Technical Bulletin 44: 2-3. Reprinted in Stata
Technical Bulletin Reprints, vol. 8, pp. 20-21. College Station, TX: Stata Press.

Also see
[D] expand — Duplicate observations
[D] collapse — Make dataset of summary statistics

[D] duplicates — Report, tag, or drop duplicate observations

http://www.stata-journal.com/
http://www.stata-press.com/books/speaking-stata-graphics/
http://www.stata.com/products/stb/journals/stb44.pdf

Title

copy — Copy file from disk or URL

Description Quick start Syntax Options Remarks and examples
Also see

Description

copy copies an existing file to a file with a new name.

Quick start

Copy mydata.dta from C:\myfolder to C:\otherfolder
copy c:\myfolder\mydata.dta c:\otherfolder\

As above, but change dataset name to newdata.dta
copy c:\myfolder\mydata.dta c:\otherfolder\newdata.dta

As above, but replace newdata.dta if it exists
copy c:\myfolder\mydata.dta c:\otherfolder\newdata.dta, replace

Copy web-based Stata example dataset fullauto.dta to the current working directory
copy http://www.stata-press.com/data/ri14/fullauto.dta myauto.dta

Syntax

copy filenamey filenames [, oplions]
filename, may be a filename or a URL. filenameo may be the name of a file or a directory. If filenames
is a directory name, filename; will be copied to that directory. filenames may not be a URL.

Note: Double quotes may be used to enclose the filenames, and the quotes must be used if the
filename contains embedded blanks.

options Description

public make filenames readable by all

text interpret filename; as text file and translate to native text format
replace may overwrite filenames

replace does not appear in the dialog box.

77

78 copy — Copy file from disk or URL

Options

public specifies that filenames be readable by everyone; otherwise, the file will be created according
to the default permissions of your operating system.

text specifies that filename; be interpreted as a text file and be translated to the native form of text
files on your computer. Computers differ on how end-of-line is recorded: Unix systems record one
line-feed character, Windows computers record a carriage-return/line-feed combination, and Mac
computers record just a carriage return. text specifies that filename, be examined to determine how
it has end-of-line recorded and that the line-end characters be switched to whatever is appropriate
for your computer when the copy is made.

There is no reason to specify text when copying a file already on your computer to a different
location because the file would already be in your computer’s format.

Do not specify text unless you know that the file is a text file; if the file is binary and you
specify text, the copy will be useless. Most word processors produce binary files, not text files.
The term text, as it is used here, specifies a particular way of recording textual information.

When other parts of Stata read text files, they do not care how lines are terminated, so there is no
reason to translate end-of-line characters on that score. You specify text because you may want
to look at the file with other software.

The following option is available with copy but is not shown in the dialog box:

replace specifies that filenameo be replaced if it already exists.

Remarks and examples

Examples:
Windows:

. copy orig.dta newcopy.dta

. copy mydir\orig.dta .

. copy orig.dta ../../

. copy "my document" "copy of document"

. copy ..\mydir\doc.txt document\doc.tex

. copy http://www.stata.com/examples/simple.dta simple.dta

. copy http://www.stata.com/examples/simple.txt simple.txt, text

Mac and Unix:

. copy orig.dta newcopy.dta

. copy mydir/orig.dta .

. copy orig.dta ../../

. copy "my document" "copy of document"

. copy ../mydir/doc.txt document/doc.tex

. copy http://www.stata.com/examples/simple.dta simple.dta

. copy http://www.stata.com/examples/simple.txt simple.txt, text

copy — Copy file from disk or URL 79

Also see
[D] ed — Change directory
[D] dir — Display filenames
[D] erase — Erase a disk file
[D] mkdir — Create directory
[D] rmdir — Remove directory
[D] shell — Temporarily invoke operating system
[D] type — Display contents of a file

[U] 11.6 Filenaming conventions

Title

corr2data — Create dataset with specified correlation structure

Description Quick start Menu Syntax
Options Remarks and examples Methods and formulas Reference
Also see

Description

corr2data adds new variables with specified covariance (correlation) structure to the existing
dataset or creates a new dataset with a specified covariance (correlation) structure. Singular covariance
(correlation) structures are permitted. The purpose of this is to allow you to perform analyses from
summary statistics (correlations/covariances and maybe the means) when these summary statistics are
all you know and summary statistics are sufficient to obtain results. For example, these summary
statistics are sufficient for performing analysis of ¢ tests, variance, principal components, regression,
and factor analysis. The recommended process is

. clear (clear memory)
. corr2data ..., n(#) cov(...) ... (create artificial data)
. regress ... (use artificial data appropriately)

However, for factor analyses and principal components, the commands factormat and pcamat allow
you to skip the step of using corr2data; see [MV] factor and [MV] pca.

The data created by corr2data are artificial; they are not the original data, and it is not a sample
from an underlying population with the summary statistics specified. See [D] drawnorm if you want
to generate a random sample. In a sample, the summary statistics will differ from the population
values and will differ from one sample to the next.

The dataset corr2data creates is suitable for one purpose only: performing analyses when all
that is known are summary statistics and those summary statistics are sufficient for the analysis at
hand. The artificial data tricks the analysis command into producing the desired result. The analysis
command, being by assumption only a function of the summary statistics, extracts from the artificial
data the summary statistics, which are the same summary statistics you specified, and then makes its
calculation based on those statistics.

If you doubt whether the analysis depends only on the specified summary statistics, you can
generate different artificial datasets by using different seeds of the random-number generator (see the
seed () option below) and compare the results, which should be the same within rounding error.

Quick start

Create dataset with 1,000 observations, vl with mean of 3.4 and std. dev. of 1, v2 with mean of 3
and std. dev. of 0.5, and no correlation between v1 and v2

corr2data vl v2, n(1000) means(3.4 3) sds(1 .5)

As above, but with correlation between v1 and v2 specified in matrix mymat
corr2data vl v2, n(1000) means(3.4 3) sds(1 .5) corr(mymat)

80

corr2data — Create dataset with specified correlation structure 81

Menu

Data > Create or change data > Other variable-creation commands > Create dataset with specified correlation

corr (matrix | vector)
cov (matrix | vector)
cstorage (full)
cstorage (lower)
cstorage (upper)
forcepsd

means (vector)

Syntax
corr2data newvarlist [, options]
options Description
Main
clear replace the current dataset
double generate variable type as double; default is float
n(#) # of observations to be generated; default is current number
sds (vector) standard deviations of generated variables

correlation matrix

covariance matrix

correlation/covariance structure is stored as a symmetric kxk matrix
correlation/covariance structure is stored as a lower triangular matrix
correlation/covariance structure is stored as an upper triangular matrix
force the covariance/correlation matrix to be positive semidefinite
means of generated variables; default is means (0)

Options

seed (#) seed for random-number generator

Options
Main

clear specifies that it is okay to replace the dataset in memory, even though the current dataset has
not been saved on disk.

double specifies that the new variables be stored as Stata doubles, meaning 8-byte reals. If double
is not specified, variables are stored as floats, meaning 4-byte reals. See [D] data types.

n(#) specifies the number of observations to be generated; the default is the current number of
observations. If n(#) is not specified or is the same as the current number of observations,
corr2data adds the new variables to the existing dataset; otherwise, corr2data replaces the
dataset in memory.

sds (vector) specifies the standard deviations of the generated variables. sds () may not be specified
with cov().

corr (matrix | vector) specifies the correlation matrix. If neither corr() nor cov() is specified, the
default is orthogonal data.

cov (matrix | vector) specifies the covariance matrix. If neither corr() nor cov() is specified, the
default is orthogonal data.

82 corr2data — Create dataset with specified correlation structure

cstorage (full | lower | upper) specifies the storage mode for the correlation or covariance structure
in corr() or cov(). The following storage modes are supported:

full specifies that the correlation or covariance structure is stored (recorded) as a symmetric kX k
matrix.

lower specifies that the correlation or covariance structure is recorded as a lower triangular matrix.
With k variables, the matrix should have k(k + 1)/2 elements in the following order:

Cll C21 C22 CSl 032 C33 s Ckl Ck2 cee Ckk

upper specifies that the correlation or covariance structure is recorded as an upper triangular
matrix. With k variables, the matrix should have k(k + 1)/2 elements in the following order:

C11 C12Cy3 ... C1p Co2 Ca3 ... Cop +.. Cim1n—1) Cr—1r) Crke

Specifying cstorage (full) is optional if the matrix is square. cstorage (lower) or cstor-
age (upper) is required for the vectorized storage methods. See Storage modes for correlation
and covariance matrices in [D] drawnorm for examples.

forcepsd modifies the matrix C to be positive semidefinite (psd) and to thus be a proper covariance
matrix. If C is not positive semidefinite, it will have negative eigenvalues. By setting the negative
eigenvalues to 0 and reconstructing, we obtain the least-squares positive-semidefinite approximation
to C. This approximation is a singular covariance matrix.

means (vector) specifies the means of the generated variables. The default is means (0).

seed (#) specifies the seed of the random-number generator used to generate data. # defaults to 0. The
random numbers generated inside corr2data do not affect the seed of the standard random-number
generator.

Remarks and examples

corr2data is designed to enable analyses of correlation (covariance) matrices by commands
that expect variables rather than a correlation (covariance) matrix. corr2data creates variables with
exactly the correlation (covariance) that you want to analyze. Apart from means and covariances, all
aspects of the data are meaningless. Only analyses that depend on the correlations (covariances) and
means produce meaningful results. Thus you may perform a paired ¢ test ([R] ttest) or an ordinary
regression analysis ([R] regress), etc.

If you are not sure that a statistical result depends only on the specified summary statistics and
not on other aspects of the data, you can generate different datasets, each having the same summary
statistics but other different aspects, by specifying the seed () option. If the statistical results differ
beyond what is attributable to roundoff error, then using corr2data is inappropriate.

corr2data — Create dataset with specified correlation structure 83

> Example 1

We first run a regression using the auto dataset.

. use http://www.stata-press.com/data/r14/auto
(1978 Automobile Data)

. regress weight length trunk

Source SS df MS Number of obs = 74
F(2, 71) = 303.95

Model 39482774 .4 2 19741387.2 Prob > F = 0.0000
Residual 4611403.95 71 64949.3513 R-squared = 0.8954
Adj R-squared = 0.8925

Total 44094178.4 73 604029.841 Root MSE = 254.85
weight Coef. Std. Err. t P>t [95% Conf. Intervall
length 33.83435 1.949751 17.35 0.000 29.94666 37.72204
trunk -5.83515 10.14957 -0.57 0.567 -26.07282 14.40252
_cons -3258.84 283.3547 -11.50 0.000 -3823.833 -2693.846

Suppose that, for some reason, we no longer have the auto dataset. Instead, we know the means
and covariance matrices of weight, length, and trunk, and we want to do the same regression
again. The matrix of means is

. mat list M

M[1,3]
weight length trunk
_cons 3019.4595 187.93243 13.756757

and the covariance matrix is

. mat 1list V

symmetric V[3,3]
weight length trunk
weight 604029.84
length 16370.922 495.78989
trunk 2234.6612 69.202518 18.296187

To do the regression analysis in Stata, we need to create a dataset that has the specified correlation
structure.

. corr2data x y z, n(74) cov(V) means(M)
. regress weight length trunk

Source SS df MS Number of obs = 74
F(2, 71) = 303.95

Model 39482774 .4 2 19741387.2 Prob > F = 0.0000
Residual 4611403.95 71 64949.3513 R-squared = 0.8954
Adj R-squared = 0.8925

Total 44094178.4 73 604029.841 Root MSE = 254.85
weight Coef. Std. Err. t P>|t] [95% Conf. Intervall
length 33.83435 1.949751 17.35 0.000 29.94666 37.72204
trunk -5.83515 10.14957 -0.57 0.567 -26.07282 14.40252
_cons -3258.84 283.3547 -11.50 0.000 -3823.833 -2693.846

The results from the regression based on the generated data are the same as those based on the real
data.

4

84 corr2data — Create dataset with specified correlation structure

Methods and formulas

Two steps are involved in generating the desired dataset. The first step is to generate a zero-mean,
zero-correlated dataset. The second step is to apply the desired correlation structure and the means
to the zero-mean, zero-correlated dataset. In both steps, we take into account that, given any matrix
A and any vector of variables X, Var(A’X) = A’Var(X)A.

Reference

Cappellari, L., and S. P. Jenkins. 2006. Calculation of multivariate normal probabilities by simulation, with applications
to maximum simulated likelihood estimation. Stata Journal 6: 156-189.

Also see

[D] data types — Quick reference for data types

[D] drawnorm — Draw sample from multivariate normal distribution

http://www.stata-journal.com/sjpdf.html?articlenum=st0101
http://www.stata-journal.com/sjpdf.html?articlenum=st0101

Title

count — Count observations satisfying specified conditions

Description Quick start Menu Syntax
Remarks and examples Stored results References Also see
Description

count counts the number of observations that satisfy the specified conditions. If no conditions are
specified, count displays the number of observations in the data.

Quick start

Count the number of observations
count

As above, but where catvar equals 3
count if catvar==

Count observations for each value of catvar

by catvar: count

Menu

Data > Data utilities > Count observations satisfying condition

Syntax
count [1}‘] [in]

by is allowed; see [D] by.

Remarks and examples

count may strike you as an almost useless command, but it can be one of Stata’s handiest.

> Example 1

How many times have you obtained a statistical result and then asked yourself how it was possible?
You think a moment and then mutter aloud, “Wait a minute. Is income ever negative in these data?”’
or “Is sex ever equal to 37” count can quickly answer those questions:

. use http://www.stata-press.com/data/r14/countxmpl
(1980 Census data by state)

. count
641

85

86 count — Count observations satisfying specified conditions

. count if income<O
0

. count if sex==
1

. by division: count if sex==

-> division = New England
0

-> division = Mountain
0

-> division = Pacific
1

We have 641 observations. income is never negative. sex, however, takes on the value 3 once.
When we decompose the count by division, we see that it takes on that odd value in the Pacific
division.

4

Stored results
count stores the following in r():

Scalars
r(N) number of observations

References

Cox, N. J. 2007a. Speaking Stata: Counting groups, especially panels. Stata Journal 7: 571-581.
——. 2007b. Speaking Stata: Making it count. Stata Journal 7: 117-130.
——. 2007c. Stata tip 51: Events in intervals. Stata Journal 7: 440-443.

Also see

[R] tabulate oneway — One-way table of frequencies

http://www.stata-journal.com/sjpdf.html?articlenum=dm0033
http://www.stata-journal.com/sjpdf.html?articlenum=pr0029
http://www.stata-journal.com/sjpdf.html?articlenum=pr0033

Title

cross — Form every pairwise combination of two datasets

Description Quick start Menu Syntax
Remarks and examples References Also see

Description

cross forms every pairwise combination of the data in memory with the data in filename. If
filename is specified without a suffix, .dta is assumed.

Quick start

Form every pairwise combination of observations from mydatal.dta in memory with observations
from mydata2.dta

cross using mydata2

Menu

Data > Combine datasets > Form every pairwise combination of two datasets

Syntax

cross using filename

Remarks and examples

This command is rarely used; also see [D] joinby, [D] merge, and [D] append.

Crossing refers to merging two datasets in every way possible. That is, the first observation of the
data in memory is merged with every observation of filename, followed by the second, and so on.
Thus the result will have N7 N5 observations, where N7 and N9 are the number of observations in
memory and in filename, respectively.

Typically, the datasets will have no common variables. If they do, such variables will take on only
the values of the data in memory.

> Example 1

We wish to form a dataset containing all combinations of three age categories and two sexes to
serve as a stub. The three age categories are 20, 30, and 40. The two sexes are male and female:

87

88 cross — Form every pairwise combination of two datasets

. input str6 sex

sex
1. male
2. female
3. end

. save sex
file sex.dta saved

. drop _all
. input agecat
agecat
1. 20
2. 30
3. 40
4. end
. cross using sex
. list
agecat sex
1. 20 male
2. 30 male
3. 40 male
4. 20 female
5. 30 female
6. 40 female
References

Baum, C. F. 2009. An Introduction to Stata Programming. College Station, TX: Stata Press.
Franklin, C. H. 2006. Stata tip 29: For all times and all places. Stata Journal 6: 147-148.

Also see
[D] append — Append datasets
[D] fillin — Rectangularize dataset
[D] joinby — Form all pairwise combinations within groups
[D] merge — Merge datasets

[D] save — Save Stata dataset

http://www.stata-press.com/books/isp.html
http://www.stata-journal.com/sjpdf.html?articlenum=dm0020

Title

data types — Quick reference for data types

Description Remarks and examples Also see

Description

This entry provides a quick reference for data types allowed by Stata. See [U] 12 Data for details.
Remarks and examples

Closest to 0

Storage type Minimum Maximum without being 0 Bytes
byte —127 100 +1 1
int —32,767 32,740 +1 2
long —2,147,483,647 2,147,483,620 +1 4
float —1.70141173319 x 103 1.70141173319 x 1038 +10738 4
double —8.9884656743 x 10397 8.9884656743 x 1037 +107323 8

Precision for float is 3.795 x 1078,
Precision for double is 1.414 x 10716,

String Maximum

storage type length Bytes

strl 1 1

str2 2 2

str2045 2045 2045

strL 2000000000 2000000000

Each element of data is said to be either type numeric or type string. The word “real” is sometimes
used in place of numeric. Associated with each data type is a storage type.

Numbers are stored as byte, int, long, float, or double, with the default being float. byte,
int, and long are said to be of integer type in that they can hold only integers.

Strings are stored as str#, for instance, stri, str2, str3, ..., str2045, or as strL. The number
after the str indicates the maximum length of the string. A str5 could hold the word “male”, but not
the word “female” because “female” has six characters. A strL can hold strings of arbitrary lengths,
up to 2000000000 characters, and can even hold binary data containing embedded \O characters.

Stata keeps data in memory, and you should record your data as parsimoniously as possible. If
you have a string variable that has maximum length 6, it would waste memory to store it as a str20.
Similarly, if you have an integer variable, it would be a waste to store it as a double.

89

90 data types — Quick reference for data types

Precision of numeric storage types

floats have about 7 digits of accuracy; the magnitude of the number does not matter. Thus,
1234567 can be stored perfectly as a £loat, as can 1234567e+20. The number 123456789, however,
would be rounded to 123456792. In general, this rounding does not matter.

If you are storing identification numbers, the rounding could matter. If the identification numbers
are integers and take 9 digits or less, store them as longs; otherwise, store them as doubles. doubles
have 16 digits of accuracy.

Stata stores numbers in binary, and this has a second effect on numbers less than 1. 1/10 has
no perfect binary representation just as 1/11 has no perfect decimal representation. In float, .1 is
stored as .10000000149011612. Note that there are 7 digits of accuracy, just as with numbers larger
than 1. Stata, however, performs all calculations in double precision. If you were to store 0.1 in a
float called x and then ask, say, 1ist if x==.1, there would be nothing in the list. The .1 that
you just typed was converted to double, with 16 digits of accuracy (.100000000000000014. . .), and
that number is never equal to 0.1 stored with float accuracy.

One solution is to type list if x==float(.1). The float() function rounds its argument to
float accuracy; see [FN] Programming functions. The other alternative would be store your data as
double, but this is probably a waste of memory. Few people have data that is accurate to 1 part in 10
to the 7th. Among the exceptions are banks, who keep records accurate to the penny on amounts of
billions of dollars. If you are dealing with such financial data, store your dollar amounts as doubles.

Also see

[D] compress — Compress data in memory

[D] destring — Convert string variables to numeric variables and vice versa
[D] encode — Encode string into numeric and vice versa

[D] format — Set variables’ output format

[D] recast — Change storage type of variable

[U] 12.2.2 Numeric storage types

[U] 12.4 Strings

[U] 12.5 Formats: Controlling how data are displayed

[U] 13.12 Precision and problems therein

Title

datasignature — Determine whether data have changed

Description Quick start Menu

Syntax Options Remarks and examples
Stored results Methods and formulas Reference

Also see

Description

These commands calculate, display, save, and verify checksums of the data, which taken together
form what is called a signature. An example signature is 162:11(12321):2725060400:4007406597.
That signature is a function of the values of the variables and their names, and thus the signature can
be used later to determine whether a dataset has changed.

datasignature without arguments calculates and displays the signature of the data in memory.

datasignature set does the same, and it stores the signature as a characteristic in the dataset.
You should save the dataset afterward so that the signature becomes a permanent part of the dataset.

datasignature confirm verifies that, were the signature recalculated this instant, it would match
the one previously set. datasignature confirm displays an error message and returns a nonzero
return code if the signatures do not match.

datasignature report displays a full report comparing the previously set signature to the current
one.

In the above, the signature is stored in the dataset and accessed from it. The signature can also
be stored in a separate, small file.

datasignature set, saving(filename) calculates and displays the signature and, in addition
to storing it as a characteristic in the dataset, also saves the signature in filename.

datasignature confirm using filename verifies that the current signature matches the one
stored in filename.

datasignature report using filename displays a full report comparing the current signature
with the one stored in filename.

In all the above, if filename is specified without an extension, .dtasig is assumed.

datasignature clear clears the signature, if any, stored in the characteristics of the dataset in
memory.

Quick start

Calculate and display the signature of the dataset in memory
datasignature

As above, and store the signature as a characteristic of the data
datasignature set

As above, but also save the signature in datasig.txt

datasignature set, saving(datasig.txt)

91

92 datasignature — Determine whether data have changed

Confirm that the data are currently exactly the same as they were when signed
datasignature confirm

Confirm that the data in memory have the same signature saved in datasig.txt
datasignature confirm using datasig.txt

Menu

Data > Other utilities > Manage data signature

Syntax

datasignature
datasignature set [, reset]

datasignature confirm [, strict]

datasignature report

datasignature set, saving(ﬁlenume[, replace}) [reset]

datasignature confirm using filename [, strict]

datasignature report using filename

datasignature clear

Options

reset is used with datasignature set. It specifies that even though you have previously set a
signature, you want to erase the old signature and replace it with the current one.

strict is for use with datasignature confirm. It specifies that, in addition to requiring that the
signatures match, you also wish to require that the variables be in the same order and that no new
variables have been added to the dataset. (If any variables were dropped, the signatures would not
match.)

saving (ﬁlename[, replace]) is used with datasignature set. It specifies that, in addition to
storing the signature in the dataset, you want a copy of the signature saved in a separate file.
If filename is specified without a suffix, .dtasig is assumed. The replace suboption allows
filename to be replaced if it already exists.

Remarks and examples

Remarks are presented under the following headings:

Using datasignature interactively
Example 1: Verification at a distance
Example 2: Protecting yourself from yourself
Example 3: Working with assistants
Example 4: Working with shared data

Using datasignature in do-files

Interpreting data signatures

The logic of data signatures

datasignature — Determine whether data have changed 93

Using datasignature interactively

datasignature is useful in the following cases:

1. You and a coworker, separated by distance, have both received what is claimed to be the
same dataset. You wish to verify that it is.

2. You work interactively and realize that you could mistakenly modify your data. You wish
to guard against that.

3. You want to give your dataset to an assistant to improve the labels and the like. You wish
to verify that the data returned to you are the same data.

4. You work with an important dataset served on a network drive. You wish to verify that
others have not changed it.

Example 1: Verification at a distance
You load the data and type

. datasignature
74:12(71728) :3831085005: 1395876116

Your coworker does the same with his or her copy. You compare the two signatures.

Example 2: Protecting yourself from yourself
You load the data and type

. datasignature set
74:12(71728) :3831085005: 1395876116 (data signature set)

. save, replace

From then on, you periodically type

. datasignature confirm
(data unchanged since 19feb2014 14:24)

One day, however, you check and see the message:

. datasignature confirm
(data unchanged since 19feb2014 14:24, except 2 variables have been added)

You can find out more by typing
. datasignature report
(data signature set on Monday 19feb2014 14:24)
Data signature summary

1. Previous data signature 74:12(71728) :3831085005: 1395876116
2. Same data signature today (same as 1)
3. Full data signature today 74:14(113906):1142538197:2410350265

Comparison of current data with previously set data signature

variables number notes

original # of variables 12 (values unchanged)
added variables 2 (1)

dropped variables 0

resulting # of variables 14

(1) Added variables are agesquared logincome.

94 datasignature — Determine whether data have changed

You could now either drop the added variables or decide to incorporate them:

. datasignature set

data signature already set -- specify option reset
r(110)
. datasignature set, reset
74:14(113906) : 1142538197:2410350265 (data signature reset)

Concerning the detailed report, three data signatures are reported: 1) the stored signature, 2) the
signature that would be calculated today on the basis of the same variables in their original order, and
3) the signature that would be calculated today on the basis of all the variables and in their current
order.

datasignature confirm knew that new variables had been added because signature 1 was equal
to signature 2. If some variables had been dropped, however, datasignature confirm would not
be able to determine whether the remaining variables had changed.

Example 3: Working with assistants

You give your dataset to an assistant to have variable labels and the like added. You wish to verify
that the returned data are the same data.

Saving the signature with the dataset is inadequate here. Your assistant, having your dataset, could
change both your data and the signature and might even do that in a desire to be helpful. The solution
is to save the signature in a separate file that you do not give to your assistant:

. datasignature set, saving(mycopy)
74:12(71728) :3831085005: 1395876116 (data signature set)
(file mycopy.dtasig saved)

You keep file mycopy.dtasig. When your assistant returns the dataset to you, you use it and
compare the current signature to what you have stored in mycopy.dtasig:

. datasignature confirm using mycopy
(data unchanged since 19feb2014 15:05)

By the way, the signature is a function of the following:
e The number of observations and number of variables in the data
e The values of the variables
e The names of the variables
e The order in which the variables occur in the dataset
e The storage types of the individual variables

The signature is not a function of variable labels, value labels, notes, and the like.

Example 4: Working with shared data

You work on a dataset served on a network drive, which means that others could change the data.
You wish to know whether this occurs.

The solution here is the same as working with an assistant: you save the signature in a separate,
private file on your computer,

. datasignature set, saving(private)
74:12(71728) :3831085005: 1395876116 (data signature set)
(file private.dtasig saved)

datasignature — Determine whether data have changed 95

and then you periodically check the signature by typing

. datasignature confirm using private
(data unchanged since 15mar2014 11:22)

Using datasignature in do-files

datasignature confirm aborts with error if the signatures do not match:

. datasignature confirm
data have changed since 19feb2014 15:05
r(9);

This means that, if you use datasignature confirm in a do-file, execution of the do-file will be
stopped if the data have changed.

You may want to specify the strict option. strict adds two more requirements: that the
variables be in the same order and that no new variables have been added. Without strict, these
are not considered errors:

. datasignature confirm
(data unchanged since 19feb2014 15:22)

. datasignature confirm, strict
(data unchanged since 19feb2014 15:05, but order of variables has changed)
r(9);
and

. datasignature confirm
(data unchanged since 19feb2014 15:22, except 1 variable has been added)

. datasignature confirm, strict
(data unchanged since 19feb2014 15:22, except 1 variable has been added)
r(9);

If you keep logs of your analyses, issuing datasignature or datasignature confirm imme-
diately after loading each dataset is a good idea. This way, you have a permanent record that you
can use for comparison.

Interpreting data signatures

An example signature is 74:12(71728) :3831085005:1395876116. The components are

74, the number of observations;

12, the number of variables;

71728, a checksum function of the variable names and the order in which they occur; and

3831085005 and 1395876116, checksum functions of the values of the variables, calculated
two different ways.

L

Two signatures are equal only if all their components are equal.

Two different datasets will probably not have the same signature, and it is even more unlikely that
datasets containing similar values will have equal signatures. There are two data checksums, but do
not read too much into that. If either data checksum changes, even just a little, the data have changed.
Whether the change in the checksum is large or small—or in one, the other, or both—signifies
nothing.

96 datasignature — Determine whether data have changed

The logic of data signatures

The components of a data signature are known as checksums. The checksums are many-to-one
mappings of the data onto the integers. Let’s consider the checksums of auto.dta carefully.

The data portion of auto.dta contains 38,184 bytes. There are 25638184 guch datasets or,
equivalently, 23°°472. The first checksum has 2*® possible values, and it can be proven that those
values are equally distributed over the 2305472 datasets. Thus there are 2305472 / 248 1 = 2305424
datasets that have the same first checksum value as auto.dta. The same can be said for the second
checksum. It would be difficult to prove, but we believe that the two checksums are conditionally
independent, being based on different bit shifts and bit shuffles of the same data. Of the 2395424 —]
datasets that have the same first checksum as auto.dta, the second checksum should be equally
distributed over them. Thus there are about 235376 — 1 datasets with the same first and second
checksums as auto.dta.

Now let’s consider those 2305376 — 1 other datasets. Most of them look nothing like auto.dta.
The checksum formulas guarantee that a change of one variable in 1 observation will lead to a change
in the calculated result if the value changed is stored in 4 or fewer bytes, and they nearly guarantee
it in other cases. When it is not guaranteed, the change cannot be subtle—‘Chevrolet” will have to
change to binary junk, or a double-precision 1 to —6.476678983751e+301, and so on. The change
will be easily detected if you summarize your data and just glance at the minimums and maximums.
If the data look at all like auto.dta, which is unlikely, they will look like a corrupted version.

More interesting are offsetting changes across observations. For instance, can you change one
variable in 1 observation and make an offsetting change in another observation so that, taken together,
they will go undetected? You can fool one of the checksums, but fooling both of them simultaneously
will prove difficult. The basic rule is that the more changes you make, the easier it is to create a
dataset with the same checksums as auto.dta, but by the time you have done that, the data will
look nothing like auto.dta.

Stored results

datasignature without arguments and datasignature set store the following in r():

Macros
r(datasignature) the signature

datasignature confirm stores the following in r():

Scalars

r(k_added) number of variables added
Macros

r(datasignature) the signature

datasignature confirm aborts execution if the signatures do not match and so then returns nothing
except a return code of 9.

datasignature report stores the following in r():

Scalars
r(datetime) %tc date—time when set
r(changed) . if r(k_dropped) 75 0, otherwise
0 if data have not changed, 1 if data have changed
r(reordered) 1 if variables reordered, O if not reordered,
. if r(k_added) # 0|r(k_dropped) # 0
r(k_original) number of original variables
r(k_added) number of added variables

r (k_dropped) number of dropped variables

datasignature — Determine whether data have changed 97

Macros
r(origdatasignature) original signature
r(curdatasignature) current signature on same variables, if it can be calculated
r(fulldatasignature) current full-data signature
r(varsadded) variable names added
r(varsdropped) variable names dropped

datasignature clear stores nothing in r() but does clear it.

datasignature set stores the signature in the following characteristics:

Characteristic
_dta[datasignature_si] signature
_dta[datasignature_dt] %tc date—time when set in %21x format
_dta[datasignature_v11] part 1, original variables
_dta[datasignature_v12] part 2, original variables, if necessary

etc.

To access the original variables stored in _dta[datasignature_v11], etc., from an ado-file,
code

mata: ado_fromlchar("vars", "_dta", "datasignature_v1l")

Thereafter, the original variable list would be found in ‘vars’.

Methods and formulas

datasignature is implemented using _datasignature; see [P] _datasignature.

Reference
Gould, W. W. 2006. Stata tip 35: Detecting whether data have changed. Stata Journal 6: 428-429.

Also see

[P] _datasignature — Determine whether data have changed

[P] signestimationsample — Determine whether the estimation sample has changed

http://www.stata-journal.com/sjpdf.html?articlenum=dm0024

Title

datetime — Date and time values and variables

Description Syntax Remarks and examples References Also see

Description

Syntax above provides a complete overview of Stata’s date and time values. Also see [D] datetime
translation and [D] datetime display formats for additional information.

Syntax

Syntax is presented under the following headings:

Types of dates and their human readable forms (HRFs)
Stata internal form (SIF)

HRF-to-SIF conversion functions

Displaying SIFs in HRF

Building SIFs from components

SIF-to-SIF conversion

Extracting time-of-day components from SIFs
Extracting date components from SIFs
Conveniently typing SIF values

Obtaining and working with durations

Using dates and times from other software

Also see

[D] datetime translation String to numeric date translation functions

[D] datetime display formats Display formats for dates and times

Types of dates and their human readable forms (HRFs)

Date type Examples of HRFs
datetime 20jan2010 09:15:22.120
date 20jan2010, 20/01/2010, ...
weekly date 2010w3

monthly date 2010m1

quarterly date 2010q1

half-yearly date 2010h1

yearly date 2010

The styles of the HRFs in the table above are merely examples. Perhaps you prefer 2010.01.20;
Jan. 20, 2010; 2010-1; etc.

With the exception of yearly dates, HRFs are usually stored in string variables. If you are reading
raw data, read the HRFS into strings.

HRFs are not especially useful except for reading by humans, and thus Stata provides another way
of recording dates called Stata internal form (SIF). You can convert HRF dates to SIF.

98

datetime — Date and time values and variables 99

Stata internal form (SIF)

The numeric values in the table below are equivalent to the string values in the table in the previous

section.

SIF type Examples in SIF Units

datetime/c 1,579,598,122,120 milliseconds since 01jan1960 00:00:00.000,
assuming 86,400 s/day

datetime/C 1,579,598,146,120 milliseconds since 01jan1960 00:00:00.000,
adjusted for leap seconds*

date 18,282 days since 01jan1960 (01jan1960 = 0)

weekly date 2,601 weeks since 1960wl

monthly date 600 months since 1960m1

quarterly date 200 quarters since 1960q1

half-yearly date 100 half-years since 1960hl

yearly date 2010 years since 0000

* SIF datetime/C is equivalent to coordinated universal time (UTC). In UTC, leap seconds are
periodically inserted because the length of the mean solar day is slowly increasing. See
Why there are two SIF datetime encodings in [D] datetime translation.

SIF values are stored as regular Stata numeric variables.

You can convert HRFs into SIFs by using HRF-to-SIF conversion functions; see the next section,
called HRF-to-SIF conversion functions.

You can make the numeric SIF readable by placing the appropriate %fmt on the numeric variable;
see Displaying SIFs in HRF, below.

You can convert from one SIF type to another by using SIF-to-SIF conversion functions; see
SIF-to-SIF conversion, below.

SIF dates are convenient because you can subtract them to obtain time between dates, for example,

datetime2 — datetimel= milliseconds between datetimel and datetime2
(divide by 1,000 to obtain seconds)

date2 — datel = days between datel and date2
week2 — weekl = weeks between weekl and week2
month2 — monthl = months between monthl and month2

half2 — halfl = half-years between halfl and half2

year2 — yearl = years between yearl and year2

100 datetime — Date and time values and variables

In the remaining text, we will use the following notation:

tc: a Stata double variable containing SIF datetime/c values
tC: a Stata double variable containing SIF datetime/C values

td: a Stata variable containing SIF date values

tw: a Stata variable containing SIF weekly date values
tm: a Stata variable containing SIF monthly date values
tq: a Stata variable containing SIF quarterly date values
th: a Stata variable containing SIF half-yearly date values
ty: a Stata variable containing SIF yearly date values

HRF-to-SIF conversion functions

Function to convert

SIF type HRF to SIF Note

datetime/c tc = clock(HRFstr, mask) tc must be double
datetime/C tC = Clock (HRFstr, mask) tC must be double

date td = date (HRFstr, mask) td may be float or long
weekly date tw = weekly (HRFstr, mask) tw may be float or int
monthly date tm = monthly (HRFstr, mask) tm may be float or int
quarterly date tq = quarterly(HRFstr, mask) tq may be float or int
half-yearly date th = halfyearly(HRFstr, mask) th may be float or int
yearly date ty = yearly (HRFstr, mask) ty may be float or int

Warning: To prevent loss of precision, datetime SIFs must be stored as doubles.

Examples:

1.

You have datetimes stored in the string variable mystr, an example being “2010.07.12
14:32”. To convert to SIF datetime/c, you type

. generate double eventtime = clock(mystr, "YMDhm")
The mask "YMDhm" specifies the order of the datetime components. In this case, they are
year, month, day, hour, and minute.
You have datetimes stored in mystr, an example being “2010.07.12 14:32:12”. You type
. generate double eventtime = clock(mystr, "YMDhms")
Mask element s specifies seconds. In example 1, there were no seconds; in this example,
there are.
You have datetimes stored in mystr, an example being “2010 Jul 12 14:32”. You type
. generate double eventtime = clock(mystr, "YMDhm")
This is the same command that you typed in example 1. In the mask, you specify the order

of the components; Stata figures out the style for itself. In example 1, months were numeric.
In this example, they are spelled out (and happen to be abbreviated).

datetime — Date and time values and variables 101

. You have datetimes stored in mystr, an example being “July 12, 2010 2:32 PM”. You

type

. generate double eventtime = clock(mystr, "MDYhm")

Stata automatically looks for AM and PM, in uppercase and lowercase, with and without
periods.

. You have datetimes stored in mystr, an example being “7-12-10 14.32”. The 2-digit year

is to be interpreted as being prefixed with 20. You type

. generate double eventtime = clock(mystr, "MD20Yhm")

You have datetimes stored in mystr, an example being “14:32 on 7/12/2010”. You type
. generate double eventtime = clock(mystr, "hm#MDY")
The # sign between m and M means, “ignore one thing between minute and month”, which

in this case is the word “on”. Had you omitted the # from the mask, the new variable
eventtime would have contained missing values.

You have a date stored in mystr, an example being “22/7/2010”. In this case, you want
to create an SIF date instead of a datetime. You type

. generate eventdate = date(mystr, "DMY")

Typing

. generate double eventtime = clock(mystr, "DMY")

would have worked, too. Variable eventtime would contain a different coding from that
contained by eventdate; namely, it would contain milliseconds from 1jan1960 rather than
days (1,595,376,000,000 rather than 18,465). Datetime value 1,595,376,000,000 corresponds
to 22jul2010 00:00:00.000.

See [D] datetime translation for more information about the HRF-to-SIF conversion functions.

Displaying SIFs in HRF

Display format to

SIF type present SIF in HRF
datetime/c %tc
datetime/C #tC
date %td
weekly date htw
monthly date %tm
quarterly date %tq
half-yearly date %th
yearly date Wty

The display formats above are the simplest forms of each of the SIFs. You can control how each
type of SIF date is displayed; see [D] datetime display formats.

102 datetime — Date and time values and variables

Examples:

1. You have datetimes stored in string variable mystr, an example being “2010.07.12 14:32”.
To convert to SIF datetime/c and make the new variable readable when displayed, you type

. generate double eventtime = clock(mystr, "YMDhm")
. format eventtime %tc
2. You have a date stored in mystr, an example being “22/7/2010”. To convert to an SIF date
and make the new variable readable when displayed, you type

. generate eventdate = date(mystr, "DMY")
. format eventdate Jtd

Building SIFs from components

Function to build
SIF type from components

datetime/c tc = mdyhms (M, D, Y, h, m, s)
tc = dhms(td, h, m, s)
tc = hms(h, m, s)

datetime/C tC = Cmdyhms(M, D, Y, h, m, s)
tC = Cdhms(td, h, m, s)
tC = Chms(h, m, s)

date td =mdy(M, D, Y)
weekly date w = yw(Y, W)
monthly date tm = ym(Y, M)
quarterly date tq = yq(¥, Q)
half-yearly date th = yh(Y, H)
yearly date ty = y(¥)

Warning: SIFs for datetimes must be stored as doubles.

Examples:

1. Your dataset has three variables, mo, da, and yr, with each variable containing a date
component in numeric form. To convert to SIF date, you type

. generate eventdate = mdy(mo, da, yr)
. format eventdate Jtd

2. Your dataset has two numeric variables, mo and yr. To convert to SIF date corresponding to
the first day of the month, you type

. generate eventdate = mdy(mo, 1, yr)
. format eventdate Jtd

3. Your dataset has two numeric variables, da and yr, and one string variable, month,
containing the spelled-out month. In this case, do not use the building-from-component
functions. Instead, construct a new string variable containing the HRF and then convert the
string using the HRF-to-SIF conversion functions:

. generate str work = month + " " + string(da) + " " + string(yr)

. generate eventdate date(work, "MDY")
. format eventdate %td

datetime — Date and time values and variables 103

SIF-to-SIF conversion

To:
From: datetime/c datetime/C date
datetime/c tC = Cofc(rc) td = dofc(tc)
datetime/C tc = cofC(tC) td = dofC(tC)
date tfc = cofd(1d) tC = Cofd(td)
weekly td = dofw(tw)
monthly td = dofm(tm)
quarterly td = dofq(tg)
half-yearly td = dofh (th)
yearly td = dofy(ty)
To:
From: weekly monthly quarterly
date tw = wofd (td) tm = mofd(td) tq = qofd(td)
To:
From: half-yearly yearly
date th = hofd (td) ty = yofd(«d)

To convert between missing entries, use two functions, going through date or datetime as appropriate.
For example, quarterly of monthly is tq = qofd(dofm(tm)).
Examples:

1. You have the SIF datetime/c variable eventtime and wish to create the new variable
eventdate containing just the date from the datetime variable. You type

. generate eventdate = dofc(eventtime)
. format eventdate %td

2. You have the SIF date variable eventdate and wish to create the new SIF datetime/c variable
eventtime from it. You type

. generate double eventtime = cofd(eventdate)
. format eventtime Jtc

The time components of the new variable will be set to the default 00:00:00.000.
3. You have the SIF quarterly variable eventqtr and wish to create the new SIF date variable
eventdate from it. You type
. generate eventdate = dofq(eventqtr)

. format eventdate Jtq

The new variable, eventdate, will contain Oljan dates for quarter 1, Olapr dates for
quarter 2, 01jul dates for quarter 3, and Oloct dates for quarter 4.

4. You have the SIF datetime/c variable admittime and wish to create the new SIF quarterly
variable admitqtr from it. You type
. generate admitqtr = gofd(dofc(admittime))
. format admitqtr %tq

Because there is no qofc() function, you use qofd(dofc()).

104 datetime — Date and time values and variables

Extracting time-of-day components from SIFs

Desired component Function Example
hour of day hh(#c) or hhC(zC) 14
minutes of day mm (¢¢) or mmC (tC) 42
seconds of day ss(tc) or ssC(tC) 57.123

Notes:
0 < hh(tc) <23,
0 <mm(tc) <59,
0 < ss(tc) <60,

Example:

0 <hhC(tC) <23
0 <mmC(rC) <59

0 <ssC(tC) <61 (sic)

1. You have the SIF datetime/c variable admittime. You wish to create the new variable
admithour equal to the hour and fraction of hour within the day of admission. You type

. generate admithour = hh(admittime) + mm(admittime)/60
> + ss(admittime)/3600

Extracting date components from SIFs

Desired component Function Example*
calendar year year (td) 2013
calendar month month (td) 7
calendar day day (td) 5
day of week dow (td) 2
(0=Sunday)

Julian day of year doy (td) 186
(1=first day)

week within year week (td) 27
(1=first week)

quarter within year quarter (td) 3
(1=first quarter)

half within year halfyear (¢d) 2

(1=first half)

* All examples are with td=mdy(7,5,2013).
All functions require an SIF date as an argument. To extract components from other SIFs,
use the appropriate SIF-to-SIF conversion function to convert to an SIF date, for example,

quarter (dofq(tq)).

Examples:

1. You wish to obtain the day of week Sunday, Monday, ..

., corresponding to the SIF date

variable eventdate. You type

. generate day_of_week = dow(eventdate)

The new variable, day_of _week, contains O for Sunday, 1 for Monday, ..., 6 for Saturday.

datetime — Date and time values and variables 105

2. You wish to obtain the day of week Sunday, Monday, . . ., corresponding to the SIF datetime/c
variable eventtime. You type

. generate day_of_week = dow(dofc(eventtime))

3. You have the SIF date variable evdate and wish to create the new SIF date variable evdate_r
from it. evdate_r will contain the same date as evdate but rounded back to the first of
the month. You type

. generate evdate_r = mdy(month(evdate), 1, year(evdate))

In the above solution, we used the date-component extraction functions month () and year ()
and used the build-from-components function mdy ().

Conveniently typing SIF values

You can type SIF values by just typing the number, such as 16,237 or 1,402,920,000,000, as in
. generate before = cond(hiredon < 16237, 1, 0) if !missing(hiredon)
. drop if admittedon < 1402920000000
Easier to type is
. generate before = cond(hiredon < td(15jun2004), 1, 0) if !missing(hiredon)
. drop if admittedon < tc(15jun2004 12:00:00)
You can type SIF date values by typing the date inside td (), as in td(15jun2004).

You can type SIF datetime/c values by typing the datetime inside tc(), as in tc(15jun2004
12:00:00).

td () and tc () are called pseudofunctions because they translate what you type into their numerical
equivalents. Pseudofunctions require only that you specify the datetime components in the expected
order, so rather than 15jun2004 above, we could have specified 15 June 2004, 15-6-2004, or 15/6/2004.

The SIF pseudofunctions and their expected component order are

Desired SIF type Pseudofunction

datetime/c tc([day-month-year| hh:mm][:ss[.sss]])
datetime/C tC([day-month-year| hh:mm]|:ss[.sss]])
date td (day-month-year)

weekly date tw (year-week)

monthly date tm (year-month)

quarterly date tq (year-quarter)

half-yearly date th (year-half)

yearly date none necessary; just type year

The day-month-year in tc() and tC() are optional. If you omit them, 01jan1960 is assumed.
Doing so produces time as an offset, which can be useful in, for example,

. generate six_hrs_later = eventtime + tc(6:00)

106 datetime — Date and time values and variables

Obtaining and working with durations

SIF values are simply durations from 1960. SIF datetime/c values record the number of milliseconds
from 1jan1960 00:00:00; SIF date values record the number of days from 1jan1960, and so on.

To obtain the time between two SIF variables—the duration—subtract them:

. generate days_employed = curdate - hiredate

. generate double ms_inside = discharge_time - admit_time

To obtain a new SIF that is equal to an old SIF before or after some amount of time, just add or
subtract the desired durations:
. generate lastdate = hiredate + days_employed
. format lastdate ’%td

. generate double admit_time = discharge_time - ms_inside
. format admit_time %tc

Remember to use the units of the SIF variables. SIF dates are in terms of days, SIF weekly dates
are in terms of weeks, etc., and SIF datetimes are in terms of milliseconds. Concerning milliseconds,
it is often easier to use different units and conversion functions to convert to milliseconds:

. generate hours_inside = hours(discharge_time - admit_time)
. generate admit_time = discharge_time - msofhours(hours_inside)

. format admit_time %tc

Function hours() converts milliseconds to hours. Function msofhours() converts hours to
milliseconds. The millisecond conversion functions are

Function Purpose

hours (ms) convert milliseconds to hours; returns ms/(60 x 60 x 1000)
minutes (ms) convert milliseconds to minutes; returns ms/(60 x 1000)
seconds (ms) convert milliseconds to seconds; returns ms/1000
msofhours (/) convert hours to milliseconds; returns 2 x 60 x 60 x 1000
msofminutes (m) convert minutes to milliseconds; returns m x 60 x 1000
msofseconds (s) convert seconds to milliseconds; returns s x 1000

If you plan on using returned values to add to or subtract from a datetime SIF, be sure they are
stored as doubles.

Using dates and times from other software
Most software stores dates and times numerically as durations from some sentinel date in specified

units, but they differ on the sentinel date and the units. If you have imported data, it is usually
possible to adjust the numeric date and datetime values to SIF.

datetime — Date and time values and variables 107

Converting SAS dates:

SAS provides dates measured as the number of days since 01jan1960. This is the same coding
as used by Stata:

. generate statadate = sasdate
. format statadate %td

SAS provides datetimes measured as the number of seconds since 01jan1960 00:00:00, assuming
86,400 seconds/day. To convert to SIF datetime/c, type

. generate double statatime = (sastimex1000)
. format statatime Ytc

It is important that variables containing SAS datetimes, such as sastime above, be imported
into Stata as doubles.

Converting SPSS dates:

SPSS provides dates and datetimes measured as the number of seconds since 14oct1582 00:00:00,
assuming 86,400 seconds/day. To convert to SIF datetime/c, type

. generate double statatime = (spsstime*1000) + tc(14oct1582 00:00)
. format statatime Ytc

To convert to SIF date, type

. generate statadate = dofc((spsstime*1000) + tc(14oct1582 00:00))
. format statadate Ytd

Converting R dates:
R stores dates as days since 01jan1970. To convert to SIF date, type

. generate statadate = rdate - td(01jan1970)
. format statadate %td

R stores datetimes as the number of UTC-adjusted seconds since 01jan1970 00:00:00. To convert
to SIF datetime/C, type

. generate double statatime = rtime - tC(01jan1970 00:00)
. format statatime %tC

To convert to SIF datetime/c, type

. generate double statatime = cofC(rtime - tC(01jan1970 00:00))
. format statatime %tc

There are issues of which you need to be aware when working with datetime/C values; see
Why there are two SIF datetime encodings and Advice on using datetime/c and datetime/C,
both in [D] datetime translation.

Converting Excel dates:

If you have data in an Excel format file, you may want to use the import excel command.
If the Excel file contains numerically encoded dates, import excel will read those dates and
properly code them in SIF. You do not need to perform any conversion after importing your
data with import excel.

On the other hand, if you copy and paste a spreadsheet into Stata’s editor, dates and datetimes
are pasted as strings in HRF. The discussion below concerns converting such HRF datetime
strings to SIF numeric values.

108 datetime — Date and time values and variables

Excel has used different date systems across operating systems. Excel for Windows used the
“1900 Date System”. Excel for Mac used the “1904 Date System”. More recently, Excel has
been standardizing on the 1900 Date System on all operating systems.

Regardless of operating system, Excel can use either encoding. See
http://support.microsoft.com/kb/214330 for instructions on converting workbooks between date
systems.

Converted dates will be off by four years if you choose the wrong date system.

Converting Excel 1900-Date-System dates:

For dates on or after 01mar1900, Excel stores dates as days since 30dec1899. To convert to a
Stata date,

. generate statadate = exceldate + td(30dec1899)
. format statadate Ytd

Excel can store dates between 01jan1900 and 28feb1900, but the formula above will not handle
those two months. See http://www.cpearson.com/excel/datetime.htm for more information.

For datetimes on or after 01mar1900 00:00:00, Excel stores datetimes as days plus fraction of
day since 30dec1899 00:00:00. To convert with a one-second resolution to a Stata datetime,

. generate statatime = round((exceltime+td(30dec1899))*86400)*1000
. format statatime Ytc

Converting Excel 1904-Date-System dates:

For dates on or after 01jan1904, Excel stores dates as days since 01jan1904. To convert to a
Stata date,

. generate statadate = exceldate + td(01jan1904)
. format statadate Ytd

For datetimes on or after 01jan1904 00:00:00, Excel stores datetimes as days plus fraction of
day since 01jan1904 00:00:00. To convert with a one-second resolution to a Stata datetime,

. generate statatime = round((exceltime+td(01jan1904))*86400)*1000
. format statatime %tc

Converting OpenOffice dates:
OpenOffice uses the Excel 1900 Date System described above.

Converting Unix time:

Unix time is stored as the number of seconds since midnight, 01jan1970. To convert to a Stata
datetime,

. generate double statatime = unixtime + mdyhms(1,1,1970,0,0,0)

To convert to a Stata date,

. generate statadate = dofc(unixtime + mdyhms(1,1,1970,0,0,0))

Remarks and examples

The best way to learn about Stata’s date and time functions is to experiment with them using the
display command; see [P] display.

http://support.microsoft.com/kb/214330
http://www.cpearson.com/excel/datetime.htm

datetime — Date and time values and variables 109

. display date("5-12-1998", "MDY")

14011

. display %td date("5-12-1998", "MDY")
12may1998

. display clock("5-12-1998 11:15", "MDY hm")
1.211e+12

. display %20.0gc clock("5-12-1998 11:15", "MDY hm")
1,210,590,900,000

. display %tc clock("5-12-1998 11:15", "MDY hm")
12may1998 11:15:00

With display, you can specify a format in front of the expression to specify how the result is to
be formatted.

References

Cox, N. J. 2010. Stata tip 68: Week assumptions. Stata Journal 10: 682—685.
——. 2012. Stata tip 111: More on working with weeks. Stata Journal 12: 565-569.

Dyck, A. 2011. Working with Unix timestamps in Stata. Statabytes.
http://statabytes.andrewdyck.com/blog/working-with-unix-timestamps-in-stata/.

Gould, W. W. 2011. Using dates and times from other software. The Stata Blog: Not Elsewhere Classified.
http://blog.stata.com/2011/01/05/using-dates-and-times-from-other-software/.

Also see
[D] datetime business calendars — Business calendars
[D] datetime display formats — Display formats for dates and times

[D] datetime translation — String to numeric date translation functions

http://www.stata-journal.com/sjpdf.html?articlenum=dm0052
http://www.stata-journal.com/article.html?article=dm0065
http://statabytes.andrewdyck.com/blog/working-with-unix-timestamps-in-stata/
http://statabytes.andrewdyck.com/blog/working-with-unix-timestamps-in-stata/
http://blog.stata.com/2011/01/05/using-dates-and-times-from-other-software/
http://blog.stata.com/2011/01/05/using-dates-and-times-from-other-software/

Title

datetime business calendars — Business calendars

Description Syntax Remarks and examples Also see

Description

Stata provides user-definable business calendars.

Syntax
Apply business calendar format

format varlist ftbcalname

Apply detailed date format with business calendar format

format varlist %tbcalname[:datetime-speciﬁers]

Convert between business dates and regular dates
{ generate |replace } bdate = bofd("calname", regulardate)

{ generate |replace } regulardate = dofb(bdate, "calname")
File calname .stbcal contains the business calendar definition.

Details of the syntax follow:

1. Definition.
Business calendars are regular calendars with some dates crossed out:

November 2011
Su Mo Tu We Th Fr Sa

1 2 3 4 X
7 8 9 10 11 X
14 15 16 17 18 X
21 22 23 X X X
28 29 30

el Rl

A date that appears on the business calendar is called a business date. 11nov2011 is a business
date. 12nov2011 is not a business date with respect to this calendar.

Crossed-out dates are literally omitted. That is,

18nov2011 + 1 = 21nov2011
28nov2011 — 1 = 23n0v2011

Stata’s lead and lag operators work the same way.

110

datetime business calendars — Business calendars 111

. Business calendars are named.
Assume that the above business calendar is named simple.

. Business calendars are defined in files named calname . stbcal, such as simple.stbcal. Calendars
may be supplied by StataCorp and already installed, obtained from other users directly or via the
SSC, or written yourself. Calendars can also be created automatically from the current dataset with
the bcal create command; see [D] bcal. Stbcal-files are treated in the same way as ado-files.

You can obtain a list of all business calendars installed on your computer by typing bcal dir;
see [D] bcal.

. Datetime format.
The date format associated with the business calendar named simple is %tbsimple, which is to
say % + t + b + calname.

% it is a format
t it is a datetime
b it is based on a business calendar

calname the calendar’s name

. Format variables the usual way.
You format variables to have business calendar formats just as you format any variable, using the
format command.

. format mydate Ytbsimple
specifies that existing variable mydate contains values according to the business calendar named
simple. See [D] format.

You may format variables %tbcalname regardless of whether the corresponding stbcal-file exists.
If it does not exist, the underlying numeric values will be displayed in a %g format.

. Detailed date formats.
You may include detailed datetime format specifiers by placing a colon and the detail specifiers
after the calendar’s name.

. format mydate ’tbsimple:CCYY.NN.DD
would display 21nov2011 as 2011.11.21. See [D] datetime display formats for detailed datetime
format specifiers.

. Reading business dates.

To read files containing business dates, ignore the business date aspect and read the files as if
they contained regular dates. Convert and format those dates as %td; see HRF-to-SIF conversion
functions in [D] datetime. Then convert the regular dates to %tb business dates:

. generate mydate = bofd("simple", regulardate)

. format mydate Ytbsimple

. assert mydate!=. if regulardate!=.

The first statement performs the conversion.

The second statement attaches the %tbsimple date format to the new variable mydate so that it
will display correctly.

The third statement verifies that all dates recorded in regulardate fit onto the business calendar.
For instance, 12nov2011 does not appear on the simple calendar but, of course, it does appear on
the regular calendar. If the data contained 12nov2011, that would be an error. Function bofd ()
returns missing when the date does not appear on the specified calendar.

112 datetime business calendars — Business calendars

10.

. More on conversion.

There are only two functions specific to business dates, bofd () and dofb(). Their definitions are

bdate

regulardate = dofb(bdate, "calname")

bofd ("calname”, regulardate)

bofd () returns missing if regulardate is missing or does not appear on the specified business
calendar. dofb() returns missing if bdate contains missing.

. Obtaining day of week, etc.

You obtain day of week, etc., by converting business dates to regular dates and then using the
standard functions. To obtain the day of week of bdate on business calendar calname, type

. generate dow = dow(dofb(bdate, "calname"))

See Extracting date components from SIFs in [D] datetime for the other extraction functions.

Stbcal-files.
The stbcal-file for simple, the calendar shown below,

November 2011
Su Mo Tu We Th Fr

1 2 3 4
7 8 9 10 11
14 15 16 17 18
21 22 23 X X
28 29 30

SRR

el el

is

begin simple.stbcal

*! version 1.0.0
* simple.stbcal

version 14
purpose "Example for manual"
dateformat dmy

range O1lnov2011 30nov2011
centerdate Olnov2011

omit dayofweek (Sa Su)
omit date 24nov2011
omit date 25nov2011

end simple.stbcal

This calendar was so simple that we crossed out the Thanksgiving holidays by specifying the dates
to be omitted. In a real calendar, we would change the last two lines,

omit date 24nov2011
omit date 25nov2011

to read
omit dowinmonth +4 Th of Nov and +1

which says to omit the fourth (+4) Thursday of November in every year, and omit the day after
that (+1), too. See [D] datetime business calendars creation.

datetime business calendars — Business calendars 113

Remarks and examples

See [D] datetime for an introduction to Stata’s date and time features.

Below we work through an example from start to finish.

Remarks are presented under the following headings:

Step 1: Read the data, date as string

Step 2: Convert date variable to %td date

Step 3: Convert %td date to %tb date

Key feature: Each business calendar has its own encoding
Key feature: Omitted dates really are omitted

Key feature: Extracting components from %tb dates

Key feature: Merging on dates

Step 1: Read the data, date as string

File bcal_simple.raw on our website provides data, including a date variable, that is to be
interpreted according to the business calendar simple shown under Syntax above.

. type http://www.stata-press.com/data/r14/bcal_simple.raw

11/4/11 51
11/7/11 9

11/18/11 12
11/21/11 4
11/23/11 17
11/28/11 22

We begin by reading the data and then listing the result. Note that we read the date as a string

variable:

. infile strl0 sdate float x using http://www.stata-press.com/data/r14/bcal_simple

(6 observations read)

. list

sdate X
1. 11/4/11 51
2. 11/7/11 9
3. 11/18/11 12
4. 11/21/11 4
5. 11/23/11 17
6. 11/28/11 22

Step 2: Convert date variable to %td date

Now we create a Stata internal form (SIF) %td format date from the string date:

. generate rdate = date(sdate, "MD20Y")

. format rdate %td

See HRF-to-SIF conversion functions in [D] datetime. We verify that the conversion went well

and drop the string variable of the date:

114 datetime business calendars — Business calendars

. list
sdate X rdate
1. 11/4/11 51 04nov2011
2. 11/7/11 9 07nov2011
3. 11/18/11 12 18nov2011
4. 11/21/11 4 21nov2011
5. 11/23/11 17 23nov2011
6. 11/28/11 22 28nov2011
. drop sdate

Step 3: Convert %td date to %tb date

We convert the %td date to a %tbsimple date following the instructions of item 7 of Syntax
above.

. generate mydate = bofd("simple", rdate)
. format mydate %tbsimple

. assert mydate!=. if rdate!=.

Had there been any dates that could not be converted from regular dates to simple business dates,
assert would have responded, “assertion is false”. Nonetheless, we will list the data to show you
that the conversion went well. We would usually drop the %td encoding of the date, but we want it
to demonstrate a feature below.

. list

X rdate mydate
1. 51 04nov2011 04nov2011
2. 9 07nov2011 07nov2011
3. 12 18nov2011 18nov2011
4. 4 21nov2011 21nov2011
5. 17 23nov2011 23nov2011
6. 22 28nov2011 28nov2011

Key feature: Each business calendar has its own encoding

In the listing above, rdate and mydate appear to be equal. They are not:

. format rdate mydate %9.0g // remove date formats
. list
x rdate mydate
1. 51 18935 3
2. 9 18938 4
3. 12 18949 13
4. 4 18952 14
5. 17 18954 16
6. 22 18959 17

datetime business calendars — Business calendars 115

%tb dates each have their own encoding, and those encodings differ from the encoding used by %td
dates. It does not matter. Neither encoding is better than the other. Neither do you need to concern
yourself with the encoding. If you were curious, you could learn more about the encoding used by
%tbsimple by typing bcal describe simple; see [D] bcal.

We will drop variable rdate and put the %tbsimple format back on variable mydate:

. drop rdate
. format mydate Jtbsimple

Key feature: Omitted dates really are omitted

In Syntax, we mentioned that for the simple business calendar

18nov2011 + 1 = 21nov2011
28n0v2011 — 1 = 23nov2011

That is true:

. generate tomorrow = mydate + 1
. generate yesterday = mydate - 1

. format tomorrow yesterday %tbsimple

. list

X mydate tomorrow yesterday
1. 51 04nov2011 07nov2011 03nov2011
2. 9 07nov2011 08nov2011 04nov2011
3. 12 18nov2011 21nov2011 17nov2011
4. 4 21nov2011 22nov2011 18nov2011
5. 17 23nov2011 28nov2011 22nov2011
6. 22 28nov2011 29nov2011 23nov2011

. drop tomorrow yesterday

Stata’s lag and lead operators L.varname and F.varname work similarly.

Key feature: Extracting components from %tb dates

You extract components such as day of week, month, day, and year from business dates using the
same extraction functions you use with Stata’s regular %td dates, namely, dow(), month(), day(),
and year (), and you use function dofb() to convert business dates to regular dates. Below we add
day of week to our data, list the data, and then drop the new variable:

116 datetime business calendars — Business calendars

. generate dow = dow(dofb(mydate, "simple"))

. list
X mydate dow
1. 51 04nov2011 5
2. 9 07nov2011 1
3. 12 18nov2011 5
4. 4 21inov2011 1
5. 17 23nov2011 3
6. 22 28nov2011 1
. drop dow

See Extracting date components from SIFs in [D] datetime.

Key feature: Merging on dates

It may happen that you have one dataset containing business dates and a second dataset containing
regular dates, say, on economic conditions, and you want to merge them. To do that, you create a
regular date variable in your first dataset and merge on that:

. generate rdate = dofb(mydate, "simple")
. merge 1:1 rdate using econditions, keep(match)

. drop rdate

Also see
[D] becal — Business calendar file manipulation
[D] datetime business calendars creation — Business calendars creation

[D] datetime — Date and time values and variables

Title

datetime business calendars creation — Business calendars creation

Description Syntax Remarks and examples Also see

Description

Stata provides user-definable business calendars. Business calendars are provided by StataCorp and
by other users, and you can write your own. You can also create a business calendar automatically
from the current dataset with the bcal create command; see [D] beal. This entry concerns writing
your own business calendars.

See [D] datetime business calendars for an introduction to business calendars.

Syntax

Business calendar calname and corresponding display format %tbcalname are defined by the text file
calname . stbcal, which contains the following:

* comments

version version_of_stata
purpose "fext"

dateformat {ymd \ ydm \ myd | mdy | dym | dmy}

range date date

centerdate date

[from {date] .} to {date|.}} omit ... [lf]

where
omit ... may be
omit date pdate [and pmlist]
omit dayofweek dowlist
omit dowinmonth pm# dow [of m()nthlist] [and pmlist}
[if] may be
if restriction [& restriction }
restriction is one of

dow (dowlist)
month (monthlist)
year (yearlist)

117

118 datetime business calendars creation — Business calendars creation

date is a date written with the year, month, and day in the order specified by dateformat. For
instance, if dateformat is dmy, a date can be 12apr2013, 12-4-2013, or 12.4.2013.

pdate is a date or it is a date with character * substituted where the year would usually
appear. If dateformat is dmy, a pdate can be 12apr2013, 12-4-2013, or 12.4.2013;
or it can be 12apr#*, 12-4-%, or 12.4.*. 12apr* means the 12th of April across all
years.

dow is a day of week, in English. It may be abbreviated to as few as 2 characters, and
capitalization is irrelevant. Examples: Sunday, Mo, tu, Wed, th, Friday, saturday.

dowlist is a dow, or it is a space-separated list of one or more dows enclosed in parentheses.
Examples: Sa, (Sa), (Sa Su).

month is a month of the year, in English, or it is a month number. It may be abbreviated to
the minimum possible, and capitalization is irrelevant. Examples: January, 2, Mar, ap,
may, 6, Jul, aug, 9, Octob, nov, 12.

monthlist is a month, or it is a space-separated list of one or more months enclosed in
parentheses. Examples: Nov, (Nov), 11, (11), (Nov Dec), (11 12).

year is a 4-digit calendar year. Examples: 1872, 1992, 2013, 2050.

yearlist is a year, or it is a space-separated list of one or more years enclosed in parentheses.
Examples: 2013, (2013), (2013 2014).

pm# is a nonzero integer preceded by a plus or minus sign. Examples: -2, -1, +1. pm#
appears in omit dowinmonth pm# dow of monthlist, where pm# specifies which dow
in the month. omit dowinmonth +1 Th means the first Thursday of the month. omit
dowinmonth -1 Th means the last Thursday of the month.

pmlist is a pm#, or it is a space-separated list of one or more pm#s enclosed in parentheses.
Examples: +1, (+1), (+1 +2), (-1 +1 +2). pmlist appears in the optional and pmlist
allowed at the end of omit date and omit dowinmonth, and it specifies additional dates
to be omitted. and +1 means and the day after. and -1 means and the day before.

Remarks and examples

Remarks are presented under the following headings:

Introduction

Concepts

The preliminary commands

The omit commands: from/to and if
The omit commands: and

The omit commands: omit date

The omit commands: omit dayofweek
The omit commands: omit dowinmonth
Creating stbcal-files with bcal create
Where to place stbcal-files

How to debug stbcal-files

Ideas for calendars that may not occur to you

datetime business calendars creation — Business calendars creation

119

Introduction

A business calendar is a regular calendar with some dates crossed out, such as

The purpose of the stbcal-file is to

November 2011

Su Mo Tu We Th Fr Sa

1 2 3 4 X
X 7 8 9 10 11 X
X 14 15 16 17 18 X
X 21 22 23 X X X
X 28 29 30

1. Specify the range of dates covered by the calendar.

2. Specify the particular date that will be encoded as date 0.

3. Specify the dates from the regular calendar that are to be crossed out.

The stbcal-file for the above calendar could be as simple as

version 14
range Olnov2011 30nov2011
centerdate Olnov2011

omit
omit
omit
omit
omit
omit
omit
omit
omit
omit

date
date
date
date
date
date
date
date
date
date

5nov2011

6nov2011
12nov2011
13nov2011
19nov2011
20nov2011
24nov2011
25n0v2011
26nov2011
27nov2011

begin example_1.stbcal ————

end example_1.stbcal ————

In fact, this calendar can be written more compactly because we can specify to omit all Saturdays
and Sundays:

version 14

range Olnov2011 30nov2011
centerdate Olnov2011

omit dayofweek (Sa Su)

omit date 24nov2011
omit date 25nov2011

begin example_2.stbcal ——

end example_2.stbcal ————

In this particular calendar, we are omitting 24nov2011 and 25nov2011 because of the American
Thanksgiving holiday. Thanksgiving is celebrated on the fourth Thursday of November, and many
businesses close on the following Friday as well. It is possible to specify rules like that in stbcal-files:

120 datetime business calendars creation — Business calendars creation

begin example_3.stbcal

version 14

range Olnov2011 30nov2011
centerdate Olnov2011

omit dayofweek (Sa Su)

omit dowinmonth +4 Th of Nov and +1

end example_3.stbcal

Understand that this calendar is an artificial example, and it is made all the more artificial because
it covers so brief a period. Real stbcal-files cover at least decades, and some cover centuries.

Concepts

You are required to specify four things in an stbcal-file:
1. the version of Stata being used,
2. the range of the calendar,
3. the center date of the calendar, and
4. the dates to be omitted.

Version.
You specify the version of Stata to ensure forward compatibility with future versions of Stata. If
your calendar starts with the line version stataversion, future versions of Stata will know
how to interpret the file even if the definition of the stbcal-file language has greatly changed.

Range.
A calendar is defined over a specific range of dates, and you must explicitly state what that range
is. When you or others use your calendar, dates outside the range will be considered invalid, which
usually means that they will be treated as missing values.

Center date.
Stata stores dates as integers. In a calendar, 57 might stand for a particular date. If it did, then
57 — 1 = 56 stands for the day before, and 57 + 1 = 58 stands for the day after. The previous
statement works just as well if we substitute —12,739 for 57, and thus the particular values do
not matter except that we must agree upon what values we wish to standardize because we will
be storing these values in our datasets.

The standard is called the center date, and here center does not mean the date that corresponds to
the middle of your calendar. It means the date that corresponds to the center of integers, which is
to say, 0. You must choose a date within the range as the standard. The particular date you choose
does not matter, but most authors choose easily remembered ones. Stata’s built-in %td calendar
uses 01jan1960, but that date will probably not be available to you because the center date must
be a date on the business calendars, and most businesses were closed on 01jan1960.

It will sometimes happen that you will want to expand the range of your calendar in the future.
Today, you make a calendar that covers, say 1990 to 2020, which is good enough for your purposes.
Later, you need to expand the range, say back to 1970 or forward to 2030, or both. When you
update your calendar, do not change the center date. This way, your new calendar will be backward
compatible with your previous one.

Onmitted dates.
Obviously you will need to specify the dates to be omitted. You can specify the exact dates to be
omitted when need be, but whenever possible, specify the rules instead of the outcome of the rules.
Rules change, so learn about the from/to prefix that can be used in front of omit commands.
You can code things like

datetime business calendars creation — Business calendars creation 121

from 01jan1960 to 31dec1968: omit ...
from 01jan1979 to .: omit ...

When specifying from/to, . for the first date is synonymous with the opening date of the range.
. for the second date is synonymous with the closing date.

The preliminary commands
Stbcal-files should begin with these commands:

version version_of_stata

purpose "fext"

dateformat {ymd|ydm|myd|mdy|dym|dmy }
range date date

centerdate date

version version_of_stata
At the time of this writing, you would specify version 14. Better still, type command version
in Stata to discover the version of Stata you are currently using. Specify that version, and be sure
to look at the documentation so that you use the modern syntax correctly.

purpose "rext"
This command is optional. The purpose of purpose is not to make comments in your file. If you
want comments, include those with a * in front. The purpose sets the text that bcal describe
calname will display.

dateformat { ymd|ydm|myd|mdy |dym |dmy }
This command is optional. dateformat ymd is assumed if not specified. This command has
nothing to do with how dates will look when variables are formatted with %tbcalname. This
command specifies how you are typing dates in this stbcal-file on the subsequent commands.
Specify the format that you find convenient.

range date date
The date range was discussed in Concepts. You must specify it.

centerdate date
The centering date was discussed in Concepts. You must specify it.

The omit commands: from/to and if
An stbcal-file usually contains multiple omit commands. The omit commands have the syntax
[from {date|.} to {date|.}:] omit ... [if]

That is, an omit command may optionally be preceded by from/to and may optionally contain
an if at the end.

When you do not specify from/to, results are the same as if you specified

from . to .: omit ...

That is, the omit command applies to all dates from the beginning to the end of the range. In
Introduction, we showed the command

omit dowinmonth +4 Th of Nov and +1

122 datetime business calendars creation — Business calendars creation

Our sample calendar covered only the month of November, but imagine that it covered a longer period
and that the business was open on Fridays following Thanksgiving up until 1998. The Thanksgiving
holidays could be coded

from . to 31dec1997: omit dowinmonth +4 Th of Nov
from 01jan1998 to .: omit dowinmonth +4 Th of Nov and +1

The same holidays could also be coded

omit dowinmonth +4 Th of Nov
from 01jan1998 to .: omit dowinmonth +4 Th of Nov and +1

We like the first style better, but understand that the same dates can be omitted from the calendars
multiple times and for multiple reasons, and the result is still the same as if the dates were omitted
only once.

The optional if also determines when the omit statement is operational. Let’s think about the
Christmas holidays. Let’s say a business is closed on the 24th and 25th of December. That could be
coded

omit date 24dec*
omit date 2bdec*

although perhaps that would be more understandable if we coded

from . to .: omit date 24dec*
from . to .: omit date 25decx*

Remember, from . to . is implied when not specified. In any case, we are omitting 24dec and
25dec across all years.

Now consider a more complicated rule. The business is closed on the 24th and 25th of December
if the 25th is on Tuesday, Wednesday, Thursday, or Friday. If the 25th is on Saturday or Sunday, the
holidays are the preceding Friday and the following Monday. If the 25th is on Monday, the holidays
are Monday and Tuesday. The rule could be coded

omit date 2bdec* and -1 if dow(Tu We Th Fr)
omit date 25dec* and (-2 -1) if dow(Sa)
omit date 25dec* and (-3 -2) if dow(Su)
omit date 2bdec* and +1 if dow(Mo)

The if clause specifies that the omit command is only to be executed when 25dec* is one of
the specified days of the week. If 26dec* is not one of those days, the omit statement is ignored
for that year. Our focus here is on the if clause. We will explain about the and clause in the next
section.

Sometimes, you have a choice between using from/to or if. In such cases, use whichever is
convenient. For instance, imagine that the Christmas holiday rule for Monday changed in 2011 and
2012. You could code

from . to 31dec2010: omit date 25dec* and +1 if dow(Mo)
from 01jan2011 to .: omit date ... if dow(Mo)

or

omit date 25dec* and +1 if dow(Mo) & year (2007 2008 2009 2010)
omit date ... if dow(Mo) & year(2011 2012)

Generally, we find from/to more convenient to code than if year().

datetime business calendars creation — Business calendars creation 123

The omit commands: and

The other common piece of syntax that shows up on omit commands is and pmlist. We used it
above in coding the Christmas holidays,

omit date 25dec* and -1 if dow(Tu We Th Fr)
omit date 25dec* and (-2 -1) if dow(Sa)
omit date 25dec* and (-3 -2) if dow(Su)
omit date 25dec* and +1 if dow(Mo)

and pmlist specifies a list of days also to be omitted if the date being referred to is omitted. The
extra days are specified as how many days they are from the date being referred to. Please excuse
the inelegant “date being referred to”, but sometimes the date being referred to is implied rather than
stated explicitly. For this problem, however, the date being referred to is 25dec across a number of
years. The line

omit date 25dec* and -1 if dow(Tu We Th Fr)

says to omit 25dec and the day before if 25dec is on a Tuesday, Wednesday, etc. The line
omit date 25dec* and (-2 -1) if dow(Sa)

says to omit 25dec and two days before and one day before if 25dec is Saturday. The line
omit date 25dec* and (-3 -2) if dow(Su)

says to omit 25dec and three days before and two days before if 25dec is Sunday. The line
omit date 25dec* and +1 if dow(Mo)

says to omit 25dec and the day after if 25dec is Monday.

Another omit command for solving a different problem reads

omit dowinmonth -1 We of (Nov Dec) and +1 if year(2009)

Please focus on the and +1. We are going to omit the date being referred to and the date after if
the year is 2009. The date being referred to here is -1 We of (Nov Dec), which is to say, the last
Wednesday of November and December.

The omit commands: omit date

The full syntax of omit date is
[from {date|.} to {date|.}:] omit date pdate [and pmlist] [if]
You may omit specific dates,
omit date 25dec2010
or you may omit the same date across years:

omit date 2bdec*

124 datetime business calendars creation — Business calendars creation

The omit commands: omit dayofweek

The full syntax of omit dayofweek is
[from {date| .} to {date]. }] omit dayofweek dowlist [lf]
The specified days of week (Monday, Tuesday, ...) are omitted.

The omit commands: omit dowinmonth
The full syntax of omit dowinmonth is
[from {date|.} to {date|.}:]| omit pm# dow [of monthlist] [and pmlist] |[if]

dowinmonth stands for day of week in month and refers to days such as the first Monday, second
Monday, ..., next-to-last Monday, and last Monday of a month. This is written as +1 Mo, +2 Mo,
..., =2 Mo, and -1 Mo.

Creating stbcal-files with bcal create

Business calendars can be obtained from your Stata installation or from other Stata users. You can
also write your own business calendar files or use the bcal create command to automatically create
a business calendar from the current dataset. With bcal create, business holidays are automatically
inferred from gaps in the dataset, or they can be explicitly defined by specifying the if and in
qualifiers, as well as the excludemissing() option. You can also edit business calendars created with
bcal create or obtained from other sources. It is advisable to use bcal load or bcal describe
to verify that a business calendar is well constructed and remains so after editing.

See [D] bcal for more information on bcal create.

Where to place stbcal-files

Stata automatically searches for stbcal-files in the same way it searches for ado-files. Stata looks
for ado-files and stbcal-files in the official Stata directories, your site’s directory (SITE), your current
working directory (.), your personal directory (PERSONAL), and your directory for materials written
by other users (PLUS). On this writer’s computer, these directories happen to be

. sysdir
STATA: C:\Program Files\Statal4\
BASE: C:\Program Files\Statal2\ado\base\
SITE: C:\Program Files\Statal4\ado\site\
PLUS: C:\ado\plus\

PERSONAL: C:\ado\personal\

OLDPLACE: C:\ado\

Place calendars that you write into ., PERSONAL, or SITE. Calendars you obtain from others using
net or ssc will be placed by those commands into PLUS. See [P] sysdir, [R] net, and [R] ssc.

How to debug stbcal-files

Stbcal-files are loaded automatically as they are needed, and because this can happen anytime,
even at inopportune moments, no output is produced. If there are errors in the file, no mention is
made of the problem, and thereafter Stata simply acts as if it had never found the file, which is to
say, variables with %tbcalname formats are displayed in %g format.

datetime business calendars creation — Business calendars creation 125

You can tell Stata to load a calendar file right now and to show you the output, including error
messages. Type

. bcal load calname

It does not matter where calname .stbcal is stored, Stata will find it. It does not matter whether
Stata has already loaded calname.stbcal, either secretly or because you previously instructed the
file be loaded. It will be reloaded, you will see what you wrote, and you will see any error messages.

Ideas for calendars that may not occur to you

Business calendars obviously are not restricted to businesses, and neither do they have to be
restricted to days.

Say you have weekly data and want to create a calendar that contains only Mondays. You could
code

begin mondays.stbcal

version 14

purpose "Mondays only"
range 04jan1960 063jan2020
centerdate 04jan1960

omitdow (Tu We Th Fr Sa Su)

end mondays.stbcal

Say you have semimonthly data and want to include the 1st and 15th of every month. You could
code

begin smnth.stbcal
version 14

purpose "Semimonthly"
range 01jan1960 15dec2020
centerdate 01jan1960

omit date 2janx*

omit date 3janx*

omit date 14janx*
omit date 16janx*

omit date 31janx*
omit date 2febx*

end smnth.stbcal

Forgive the ellipses, but this file will be long. Even so, you have to create it only once.

As a final example, say that you just want Stata’s %td dates, but you wish they were centered on
01jan1970 rather than on 01jan1960. You could code

begin rectr.stbcal

version 14

Purpose "/itd centered on 01jan1970"
range 01jan1800 31dec2999
centerdate 01jan1970

end rectr.stbcal

126 datetime business calendars creation — Business calendars creation

Also see

[D] beal — Business calendar file manipulation
[D] datetime business calendars — Business calendars

[D] datetime — Date and time values and variables

Title

datetime display formats — Display formats for dates and times

Description

Description

Syntax Remarks and examples Also see

Stata stores dates and times numerically in one of the eight SIFs. An SIF might be 18,282 or
even 1,579,619,730,000. Place the appropriate format on it, and the 18,282 is displayed as 20jan2010
(%td). The 1,579,619,730,000 is displayed as 20jan2010 15:15:30 (%tc).

If you specify additional format characters, you can change how the result is displayed. Rather than
20jan2010, you could change it to 2010.01.20; January 20, 2010; or 1/20/10. Rather than 20jan2010
15:15:30, you could change it to 2010.01.20 15:15; January 20, 2010 3:15 pm; or Wed Jan 20

15:15:30 2010.

See [D] datetime for an introduction to Stata’s dates and times.

Syntax
The formats for displaying Stata internal form (SIF) dates and times in human readable form (HRF)
are
Display format to
SIF type present SIF in HRF
datetime/c %tc| details
datetime/C %tC| details
date %td| details

weekly date
monthly date
quarterly date
half-yearly date
yearly date

%tm| details
%tq| details
%th| details
%ty | details

[details]
[details]
[details]
htw [details]
[details]
[details]
[]
[details]

127

128 datetime display formats — Display formats for dates and times

The optional details allows you to control how results appear and is composed of a sequence of
the following codes:

Code Meaning Output

cC century-1 01-99

cc century-1 1-99

YY 2-digit year 00-99

vy 2-digit year 0-99

JJJ day within year 001-366

33j day within year 1-366

Mon month Jan, Feb, ..., Dec

Month month January, February, ..., December
mon month jan, feb, ..., dec

month month january, february, ..., december
NN month 01-12

nn month 1-12

DD day within month 01-31

dd day within month 1-31

DAYNAME day of week Sunday, Monday, ... (aligned)
Dayname day of week Sunday, Monday, ... (unaligned)
Day day of week Sun, Mon, ...

Da day of week Su, Mo, ...

day day of week sun, mon, ...

da day of week su, mo, ...

h half 1-2

q quarter 1-4

WW week 01-52

wW week 1-52

HH hour 00-23

Hh hour 00-12

hH hour 0-23

hh hour 0-12

MM minute 00-59

mm minute 0-59

datetime display formats — Display formats for dates and times 129

SS second 00-60 (sic, due to leap seconds)
ss second 0-60 (sic, due to leap seconds)
.8 tenths .0-9

.88 hundredths .00-.99

.sss thousandths .000-.999

am show am or pm am or pm

a.m. show a.m. or p.m. a.m. or p.m.

AM show AM or PM AM or PM

A.M. show AM. or PM. A.M. or PM.

display period
s display comma s
: display colon :
- display hyphen -
- display space

/ display slash /
\ display backslash \
e display character c
+ separator (see note)

Note: + displays nothing; it may be used to separate one code from the next to make the format
more readable. + is never necessary. For instance, %tchh:MM+am and %tchh:MMam have the
same meaning, as does %tc+hh+:+MM+am.

When details is not specified, it is equivalent to specifying

Format Implied (fully specified) format
%tC %tCDDmonCCYY_HH:MM: SS

Yhtc %tcDDmonCCYY_HH:MM: SS
J%td %tdDDmonCCYY

htw %twCCYY ' www

Ytm %tmCCYY 'mnn

htq %»tqCCYY!qq

%th %thCCYY'!'hh

Wty %htyCCYY

That is, typing
. format mytimevar Ytc
has the same effect as typing

. format mytimevar %tcDDmonCCYY_HH:MM:SS

130 datetime display formats — Display formats for dates and times

Format %tcDDmonCCYY_HH:MM:SS is interpreted as

h t c DDmonCCYY_HH:MM: SS
| | | |
all formats itis a variable formatting codes
start with % datetime format coded in specify how to
milliseconds display value

Remarks and examples

Remarks are presented under the following headings:

Specitying display formats
Times are truncated, not rounded, when displayed

Specifying display formats

Rather than using the default format 20jan2010, you could display the SIF date variable in one of
these formats:

2010.01.20
January 20, 2010
1/20/10

Likewise, rather than displaying the SIF datetime/c variable in the default format 20jan2010 15:15:30,
you could display it in one of these formats:

2010.01.20 15:15
January 20, 2010 3:15 pm
Wed Jan 20 15:15:30 2010

Here is how to do it:

1. 2010.01.20
format mytdvar %tdCCYY.NN.DD

2. January 20, 2010
format mytdvar J;tdMonth_dd,_CCYY

3. 1/20/10
format mytdvar Jtdnn/dd/YY

4. 2010.01.20 15:15
format mytcvar %tcCCYY.NN.DD_HH:MM

5. January 20, 2010 3:15 pm
format mytcvar ftcMonth_dd, _CCYY_hh:MM_am
Code am at the end indicates that am or pm should be displayed, as appropriate.

6. Wed Jan 20 15:15:30 2010
format myfcvar %tcDay_Mon_DD_HH:MM:SS_CCYY

datetime display formats — Display formats for dates and times 131

In examples 1 to 3, the formats each begin with %td, and in examples 4 to 6, the formats begin
with %tc. It is important that you specify the opening correctly—namely, as % + t + third_character.
The third character indicates the particular SIF encoding type, which is to say, how the numeric value
is to be interpreted. You specify %tc... for datetime/c variables, %tC... for datetime/C, %td... for
date, and so on.

The default format for datetime/c and datetime/C variables omits the fraction of seconds;
15:15:30.000 is displayed as 15:15:30. If you wish to see the fractional seconds, specify the format

%tcDDmonCCYY_HH:MM:SS.sss
or
%tCDDmonCCYY_HH:MM:SS.sss

as appropriate.

Times are truncated, not rounded, when displayed

Consider the time 11:32:59.999. Other, less precise, ways of writing that time are

11:32:59.99
11:32:59.9
11:32:59
11:32

That is, when you suppress the display of more-detailed components of the time, the parts that
are displayed are not rounded. Stata displays time just as a digital clock would; the time is 11:32
right up until the instant that it becomes 11:33.

Also see
[D] datetime — Date and time values and variables
[D] datetime business calendars — Business calendars

[D] datetime translation — String to numeric date translation functions

Title

datetime translation — String to numeric date translation functions

Description Syntax Remarks and examples Also see

Description

These functions translate dates and times recorded as strings containing human readable form
(HRF) to the desired Stata internal form (SIF). See [D] datetime for an introduction to Stata’s date
and time features.

Also see Using dates and times from other software in [D] datetime.

Syntax
The string-to-numeric date and time translation functions are

Desired SIF type String-to-numeric translation function
datetime/c clock (HRFstr, mask [, topyear])
datetime/C Clock (HRFstr, mask |, topyear])
date date (HRFstr, mask |, topyear])
weekly date weekly (HRFstr, mask [, topyear])
monthly date monthly (HRFstr, mask [, topyear])
quarterly date quarterly (HRFstr, mask [, topyear])
half-yearly date halfyearly (HRFstr, mask [, topyear])
yearly date yearly (HRFstr, mask |, topyear])
where

HRFstr is the string value (HRF) to be translated,
topyear is described in Working with two-digit years, below,

and mask specifies the order of the date and time components and is a string composed of a
sequence of these elements:

132

datetime translation — String to numeric date translation functions 133

Code Meaning
M month
D day within month
4-digit year
19Y 2-digit year to be interpreted as 19xx
20Y 2-digit year to be interpreted as 20xx
h hour of day
m minutes within hour
seconds within minute
ignore one element

Blanks are also allowed in mask, which can make the mask easier to read, but they otherwise have
no significance.

Examples of masks include

"MDY" HRFstr contains month, day, and year, in that order.

"MD19Y" means the same as "MDY" except that HRFstr may contain two-digit years, and
when it does, they are to be treated as if they are 4-digit years beginning with
19.

"MDYhms" HRFstr contains month, day, year, hour, minute, and second, in that order.

"MDY hms" means the same as "MDYhms"; the blank has no meaning.

"MDY#hms" means that one element between the year and the hour is to be ignored. For

example, HRF'str contains values like "1-1-2010 at 15:23:17" or values like
"1-1-2010 at 3:23:17 PM".

Remarks and examples

Remarks are presented under the following headings:

Introduction

Specifying the mask

How the HRF-to-SIF functions interpret the mask
Working with two-digit years

Working with incomplete dates and times
Translating run-together dates, such as 20060125
Valid times

The clock() and Clock() functions

Why there are two SIF datetime encodings
Advice on using datetime/c and datetime/C
Determining when leap seconds occurred

The date() function

The other translation functions

134 datetime translation — String to numeric date translation functions

Introduction

The HRF-to-SIF translation functions are used to translate string HRF dates, such as “08/12/06”,
“12-8-2006”, “12 Aug 067, “12aug2006 14:23”, and “12 aug06 2:23 pm”, to SIF. The HRF-to-SIF
translation functions are typically used after importing or reading data. You read the date information
into string variables and then the HRF-to-SIF functions translate the string into something Stata can
use, namely, an SIF numeric variable.

You use generate to create the SIF variables. The translation functions are used in the expressions,
such as

. generate double time_admitted = clock(time_admitted_str, "DMYhms")
. format time_admitted %tc

. generate date_hired = date(date_hired_str, "MDY")
. format date_hired %td

Every translation function—such as clock() and date() above—requires these two arguments:
1. the HRF'str specifying the string to be translated
2. the mask specifying the order in which the date and time components appear in HRFstr
Notes:

1. You choose the translation function clock(), Clock(), date(), ...according to the type
of SIF value you want returned.

2. You specify the mask according to the contents of HRFstr.

Usually, you will want to translate an HRF'str containing “2006.08.13 14:23” to an SIF datetime/c
or datetime/C value and translate an HRFstr containing ‘“2006.08.13” to an SIF date value. If you
wish, however, it can be the other way around. In that case, the detailed string would translate to
an SIF date value corresponding to just the date part, 13aug2006, and the less detailed string would
translate to an SIF datetime value corresponding to 13aug2006 00:00:00.000.

datetime translation — String to numeric date translation functions 135

Specifying the mask

An argument mask is a string specifying the order of the date and time components in HRFstr.
Examples of HRF date strings and the mask required to translate them include the following:

HRFstr Corresponding mask
01dec2006 14:22 "DMYhm"
01-12-2006 14.22 "DMYhm"
1dec2006 14:22 "DMYhm"
1-12-2006 14:22 "DMYhm"
01dec06 14:22 "DM20Yhm"
01-12-06 14.22 "DM20Yhm"
December 1, 2006 14:22 "MDYhm"
2006 Dec 01 14:22 "YMDhm"
2006-12-01 14:22 "YMDhm"
2006-12-01 14:22:43 "YMDhms"
2006-12-01 14:22:43.2 "YMDhms"
2006-12-01 14:22:43.21 "YMDhms"
2006-12-01 14:22:43.213 "YMDhms"
2006-12-01 2:22:43.213 pm "YMDhms" (see note 1)
2006-12-01 2:22:43.213 pm. "YMDhms"
2006-12-01 2:22:43.213 p.m. "YMDhms"
2006-12-01 2:22:43.213 PM. "YMDhms"
20061201 1422 "YMDhm"
14:22 "hm" (see note 2)
2006-12-01 "YMD"
Fri Dec 01 14:22:43 CST 2006 "#MDhms#Y"

Notes:

1. Nothing special needs to be included in mask to process a.m. and p.m. markers. When you
include code h, the HRF-to-SIF functions automatically watch for meridian markers.

2. You specify the mask according to what is contained in HRFstr. If that is a subset of
what the selected SIF type could record, the remaining elements are set to their defaults.
clock("14:22", "hm") produces 01jan1960 14:22:00 and clock ("2006-12-01", "YMD")
produces 01dec2006 00:00:00. date("jan 2006", "MY") produces 01jan2006.

mask may include spaces so that it is more readable; the spaces have no meaning. Thus you can
type

. generate double admit = clock(admitstr, "#MDhms#Y")

or type
. generate double admit = clock(admitstr, "# MD hms # Y")

and which one you use makes no difference.

136 datetime translation — String to numeric date translation functions

How the HRF-to-SIF functions interpret the mask

The HRF-to-SIF functions apply the following rules when interpreting HRFstr:

1. For each HRF string to be translated, remove all punctuation except for the period separating
seconds from tenths, hundredths, and thousandths of seconds. Replace removed punctuation
with a space.

2. Insert a space in the string everywhere that a letter is next to a number, or vice versa.
3. Interpret the resulting elements according to mask.
For instance, consider the string
01dec2006 14:22
Under rule 1, the string becomes
01dec2006 14 22
Under rule 2, the string becomes
01 dec 2006 14 22

Finally, the HRF-to-SIF functions apply rule 3. If the mask is "DMYhm", then the functions interpret
“01” as the day, “dec” as the month, and so on.

Or consider the string

Wed Dec 01 14:22:43 CST 2006
Under rule 1, the string becomes

Wed Dec 01 14 22 43 CST 2006

Applying rule 2 does not change the string. Now rule 3 is applied. If the mask is "#MDhms#Y",
the translation function skips “Wed”, interprets “Dec” as the month, and so on.

The # code serves a second purpose. If it appears at the end of the mask, it specifies that the rest
of string is to be ignored. Consider translating the string

Wed Dec 01 14 22 43 CST 2006 patient 42

The mask code that previously worked when “patient 42” was not part of the string, "#MDhms#Y",
will result in a missing value in this case. The functions are careful in the translation, and if the whole
string is not used, they return missing. If you end the mask in #, however, the functions ignore the
rest of the string. Changing the mask from "#MDhms#Y" to "#MDhms#Y#" will produce the desired
result.

Working with two-digit years

Consider translating the string 01-12-06 14:22, which is to be interpreted as 01dec2006 14:22:00.
The translation functions provide two ways of doing this.

The first is to specify the assumed prefix in the mask. The string 01-12-06 14:22 can be read
by specifying the mask "DM20Yhm". If we instead wanted to interpret the year as 1906, we would
specify the mask "DM19Yhm". We could even interpret the year as 1806 by specifying "DM18Yhm".

What if our data include 01-12-06 14:22 and include 15-06-98 11:01? We want to interpret the
first year as being in 2006 and the second year as being in 1998. That is the purpose of the optional
argument fopyear:

clock (string, mask [, topyear})

datetime translation — String to numeric date translation functions 137

When you specify topyear, you are stating that when years in string are two digits, the full year
is to be obtained by finding the largest year that does not exceed fopyear. Thus you could code

. generate double timestamp = clock(timestr, "DMYhm", 2020)

The two-digit year 06 would be interpreted as 2006 because 2006 does not exceed 2020. The
two-digit year 98 would be interpreted as 1998 because 2098 does exceed 2020.

Working with incomplete dates and times

The translation functions do not require that every component of the date and time be specified.
Translating 2006-12-01 with mask "YMD" results in 01dec2006 00:00:00.

Translating 14:22 with mask "hm" results in 01jan1960 14:22:00.

Translating 11-2006 with mask "MY" results in 01nov2006 00:00:00.

The default for a component, if not specified in the mask, is

Code Default (if not specified)
M 01
D 01
Y 1960
h 00
00
00

Thus if you have data recording “14:22”, meaning a duration of 14 hours and 22 minutes or the
time 14:22 each day, you can translate it with clock (HRFstr, "hm"). See Obtaining and working
with durations in [D] datetime.

Translating run-together dates, such as 20060125

The translation functions will translate dates and times that are run together, such as 20060125,
060125, and 20060125110215 (which is 25jan2006 11:02:15). You do not have to do anything special
to translate them:

. display %d date("20060125", "YMD")
265jan2006

. display %td date("060125", "20YMD")
253jan2006

. display %tc clock("20060125110215", "YMDhms")
25jan2006 11:02:15

In a data context, you could type

. generate startdate = date(startdatestr, "YMD")

. generate double starttime = clock(starttimestr, "YMDhms")

138 datetime translation — String to numeric date translation functions

Remember to read the original date into a string. If you mistakenly read the date as numeric,
the best advice is to read the date again. Numbers such as 20060125 and 20060125110215 will be
rounded unless they are stored as doubles.

If you mistakenly read the variables as numeric and have verified that rounding did not occur,
you can convert the variable from numeric to string by using the string() function, which comes
in one- and two-argument forms. You will need the two-argument form:

. generate str startdatestr = string(startdatedouble, "%10.0g")

. generate str starttimestr = string(starttimedouble, "%16.0g")

If you omitted the format, string() would produce 2.01e407 for 20060125 and 2.01e+13 for
20060125110215. The format we used had a width that was 2 characters larger than the length of
the integer number, although using a too-wide format does no harm.

Valid times

27:62:90 is an invalid time. If you try to convert 27:62:90 to a datetime value, you will obtain a
missing value.

24:00:00 is also invalid. A correct time would be 00:00:00 of the next day.

In hh:mm:ss, the requirements are 0 < hh < 24, 0 < mm < 60, and 0 < ss < 60, although
sometimes 60 is allowed. 31dec2005 23:59:60 is an invalid datetime/c but a valid datetime/C. 31dec2005
23:59:60 includes an inserted leap second.

30dec2005 23:59:60 is invalid in both datetime encodings. 30dec2005 23:59:60 did not include an
inserted leap second. A correct datetime would be 31dec2005 00:00:00.

The clock() and Clock() functions

Stata provides two separate datetime encodings that we call SIF datetime/c and SIF datetime/C
and that others would call “times assuming 86,400 seconds per day” and “times adjusted for leap
seconds” or, equivalently, UTC times.

The syntax of the two functions is the same:
clock(HRFstr, mask [s topyear})
Clock (HRFstr, mask [s topyear})
Function Clock () is nearly identical to function clock (), except that CLlock () returns a datetime/C
value rather than a datetime/c value. For instance,
Noon of 23n0v2010 = 1,606,132,800,000 in datetime/c
= 1,606,132,824,000 in datetime/C
They differ because 24 seconds have been inserted into datetime/C between 01jan1960 and 23nov2010.

Correspondingly, Clock() understands times in which there are leap seconds, such as 30jun1997
23:59:60. clock() would consider 30jun1997 23:59:60 an invalid time and so return a missing value.

datetime translation — String to numeric date translation functions 139

Why there are two SIF datetime encodings

Stata provides two different datetime encodings, SIF datetime/c and SIF datetime/C.

SIF datetime/c assumes that there are 24 x 60 x 60 x 1000 ms per day, just as an atomic clock
does. Atomic clocks count oscillations between the nucleus and the electrons of an atom and thus
provide a measurement of the real passage of time.

Time of day measurements have historically been based on astronomical observation, which is a
fancy way of saying that the measurements are based on looking at the sun. The sun should be at
its highest point at noon, right? So however you might have kept track of time—by falling grains
of sand or a wound-up spring—you would have periodically reset your clock and then gone about
your business. In olden times, it was understood that the 60 seconds per minute, 60 minutes per hour,
and 24 hours per day were theoretical goals that no mechanical device could reproduce accurately.
These days, we have more formal definitions for measurements of time. One second is 9,192,631,770
periods of the radiation corresponding to the transition between two levels of the ground state of
cesium 133. Obviously, we have better equipment than the ancients, so problem solved, right? Wrong.
There are two problems: the formal definition of a second is just a little too short to use for accurately
calculating the length of a day, and the Earth’s rotation is slowing down.

As a result, since 1972, leap seconds have been added to atomic clocks once or twice a year to
keep time measurements in synchronization with Earth’s rotation. Unlike leap years, however, there
is no formula for predicting when leap seconds will occur. Earth may be on average slowing down,
but there is a large random component to that. As a result, leap seconds are determined by committee
and announced 6 months before they are inserted. Leap seconds are added, if necessary, on the end
of the day on June 30 and December 31 of the year. The exact times are designated as 23:59:60.

Unadjusted atomic clocks may accurately mark the passage of real time, but you need to understand
that leap seconds are every bit as real as every other second of the year. Once a leap second is
inserted, it ticks just like any other second and real things can happen during that tick.

You may have heard of terms such as GMT and UTC.

GMT is the old Greenwich Mean Time that is based on astronomical observation. GMT has been
replaced by UTC.

UTC stands for coordinated universal time. It is measured by atomic clocks and is occasionally
corrected for leap seconds. UTC is derived from two other times, UT1 and TAI UT1 is the mean solar
time, with which UTC is kept in sync by the occasional addition of a leap second. TAI is the atomic
time on which UTC is based. TAI is a statistical combination of various atomic chronometers and even
it has not ticked uniformly over its history; see http://www.ucolick.org/~sla/leapsecs/timescales.html
and especially http://www.ucolick.org/~sla/leapsecs/dutc.htmI#TAI

UNK is our term for the time standard most people use. UNK stands for unknown or unknowing.
UNK is based on a recent time observation, probably UTC, and it just assumes that there are 86,400
seconds per day after that.

The UNK standard is adequate for many purposes, and when using it you will want to use SIF
datetime/c rather than the leap second—adjusted datetime/C encoding. If you are using computer-
timestamped data, however, you need to find out whether the timestamping system accounted for
leap-second adjustment. Problems can arise even if you do not care about losing or gaining a second
here and there.

For instance, you may import from other systems timestamp values recorded in the number of
milliseconds that have passed since some agreed upon date. You may do this, but if you choose the
wrong encoding scheme (choose datetime/c when you should choose datetime/C, or vice versa), more
recent times will be off by 24 seconds.

http://www.ucolick.org/~sla/leapsecs/timescales.html
http://www.ucolick.org/~sla/leapsecs/dutc.html#TAI

140 datetime translation — String to numeric date translation functions

To avoid such problems, you may decide to import and export data by using HRF such as “Fri
Aug 18 14:05:36 cDT 2010”. This method has advantages, but for datetime/C (UTC) encoding, times
such as 23:59:60 are possible. Some systems will refuse to decode such times.

Stata refuses to decode 23:59:60 in the datetime/c encoding (function clock()) and accepts it
with datetime/C (function Clock()). When datetime/C function Clock() sees a time with a 60th
second, Clock () verifies that the time is one of the official leap seconds. Thus when translating from
printable forms, try assuming datetime/c and check the result for missing values. If there are none,
then you can assume your use of datetime/c was valid. If there are missing values and they are due
to leap seconds and not some other error, however, you must use datetime/C Clock() to translate
the HRF. After that, if you still want to work in datetime/c units, use function cofC() to translate
datetime/C values into datetime/c.

If precision matters, the best way to process datetime/C data is simply to treat them that way.
The inconvenience is that you cannot assume that there are 86,400 seconds per day. To obtain the
duration between dates, you must subtract the two time values involved. The other difficulty has to
do with dealing with dates in the future. Under the datetime/C (UTC) encoding, there is no set value
for any date more than six months in the future. Below is a summary of advice.

Advice on using datetime/c and datetime/C

Stata provides two datetime encodings:
1. datetime/C, also known as UTC, which accounts for leap seconds
2. datetime/c, which ignores leap seconds (it assumes 86,400 seconds/day)

Systems vary in how they treat time variables. SAS ignores leap seconds. Oracle includes them.
Stata handles either situation. Here is our advice:

e If you obtain data from a system that accounts for leap seconds, import using Stata’s
datetime/C encoding.

a. If you later need to export data to a system that does not account for leap seconds,
use Stata’s cofC() function to translate time values before exporting.

b. If you intend to tsset the time variable and the analysis will be at the second level
or finer, just tsset the datetime/C variable, specifying the appropriate delta() if
necessary—for example, delta(1000) for seconds.

c. If you intend to tsset the time variable and the analysis will be coarser than the
second level (minute, hour, etc.), create a datetime/c variable from the datetime/C
variable (generate double fctime = cofC(rCtime)) and tsset that, specifying
the appropriate delta() if necessary. You must do that because in a datetime/C
variable, there are not necessarily 60 seconds in a minute; some minutes have 61
seconds.

datetime translation — String to numeric date translation functions 141

e If you obtain data from a system that ignores leap seconds, use Stata’s datetime/c encoding.

a. If you later need to export data to a system that does account for leap seconds, use
Stata’s Cofc() function to translate time values before exporting.

b. If you intend to tsset the time variable, just tsset it, specifying the appropriate
delta().

Some users prefer always to use Stata’s datetime/c because %tc values are a little easier to work
with. You can always use datetime/c if

e you do not mind having up to 1 second of error and

e you do not import or export numerical values (clock ticks) from other systems that are using
leap seconds, because doing so could introduce nearly 30 seconds of error.

Remember these two things if you use datetime/C variables:

1. The number of seconds between two dates is a function of when the dates occurred. Five
days from one date is not simply a matter of adding 5 X 24 x 60 x 60 x 1000 ms. You
might need to add another 1,000 ms. Three hundred sixty-five days from now might require
adding 1,000 or 2,000 ms. The longer the span, the more you might have to add. The best
way to add durations to datetime/C variables is to extract the components, add to them, and
then reconstruct from the numerical components.

2. You cannot accurately predict datetimes more than six months into the future. We do not
know what the datetime/C value of 25dec2026 00:00:00 will be because every year along the
way, the International Earth Rotation Reference Systems Service (IERS) will twice announce
whether a leap second will be inserted.

You can help alleviate these inconveniences. Face west and throw rocks. The benefit will be
transitory only if the rocks land back on Earth, so you need to throw them really hard. We know
what you are thinking, but this does not need to be a coordinated effort.

Determining when leap seconds occurred

Stata system file leapseconds.maint lists the dates on which leap seconds occurred. The file
is updated periodically (see [R] update; the file is updated when you update all), and Stata’s
datetime/C functions access the file to know when leap seconds occurred.

You can access it, too. To view the file, type

. viewsource leapseconds.maint

The date() function
The syntax of the date() function is
date(string, mask [, topyear])

The date () function is identical to clock() except that date () returns an SIF date value rather
than a datetime value. The date() function is the same as dofc(clock()).

daily() is a synonym for date().

142 datetime translation — String to numeric date translation functions

The other translation functions

The other translation functions are

SIF type

HRF-to-SIF translation function

weekly date
monthly date
quarterly date
half-yearly date

weekly (HRFstr, mask [, topyear])
monthly (HRFstr, mask [, topyear])
quarterly (HRFstr, mask [, topyear])
halfyearly (HRFstr, mask |, topyear])

HRFstr is the value to be translated.
mask specifies the order of the components.

topyear is described in Working with two-digit years, above.

These functions are rarely used because data seldom arrive in these formats.

Each of the functions translates a pair of numbers: weekly () translates a year and a week number
(1-52), monthly() translates a year and a month number (1-12), quarterly() translates a year
and a quarter number (1-4), and halfyearly() translates a year and a half number (1-2).

The masks allowed are far more limited than the masks for clock(), Clock(), and date():

Code Meaning

Y 4-digit year

19Y 2-digit year to be interpreted as 19xx
20Y 2-digit year to be interpreted as 20xx

W week number (weekly () only)

M month number (monthly() only)

Q quarter number (quarterly() only)

H half-year number (halfyearly() only)

The pair of numbers to be translated must be separated by a space or punctuation.
No extra characters are allowed.

Also see

[D] datetime — Date and time values and variables

[D] datetime business calendars — Business calendars

[D] datetime display formats — Display formats for dates and times

Title

describe — Describe data in memory or in file

Description Quick start
Menu Syntax
Options to describe data in memory Options to describe data in file
Remarks and examples Stored results
References Also see
Description

describe produces a summary of the dataset in memory or of the data stored in a Stata-format
dataset.

For a compact listing of variable names, use describe, simple.

Quick start

Describe all variables in the dataset
describe

Describe all variables starting with code
describe codex*

Describe properties of the dataset
describe, short

Describe without abbreviating variable names
describe, fullnames

Create a dataset containing variable descriptions
describe, replace

Describe contents of mydata.dta without opening the dataset
describe using mydata

Menu

Data > Describe data > Describe data in memory or in a file

143

144 describe — Describe data in memory or in file

Syntax
Describe data in memory

describe [varlist] [, memory_options]

Describe data in file

describe [varlist] using filename [, ﬁle_options]

memory_options Description

simple display only variable names

short display only general information

fullnames do not abbreviate variable names

numbers display variable number along with name

replace make dataset, not written report, of description

clear for use with replace

varlist store r(varlist) and r(sortlist) in addition to usual stored results;

programmer’s option

varlist does not appear in the dialog box.

file_options Description

short display only general information

simple display only variable names

varlist store r(varlist) and r(sortlist) in addition to usual stored results;

programmer’s option

varlist does not appear in the dialog box.

Options to describe data in memory

simple displays only the variable names in a compact format. simple may not be combined with
other options.

short suppresses the specific information for each variable. Only the general information (number
of observations, number of variables, size, and sort order) is displayed.

fullnames specifies that describe display the full names of the variables. The default is to present
an abbreviation when the variable name is longer than 15 characters. describe using always
shows the full names of the variables, so fullnames may not be specified with describe using.

numbers specifies that describe present the variable number with the variable name. If numbers
is specified, variable names are abbreviated when the name is longer than eight characters. The
numbers and fullnames options may not be specified together. numbers may not be specified
with describe using.

replace and clear are alternatives to the options above. describe usually produces a written report,
and the options above specify what the report is to contain. If you specify replace, however, no
report is produced; the data in memory are instead replaced with data containing the information
that the report would have presented. Each observation of the new data describes a variable in the
original data; see describe, replace below.

describe — Describe data in memory or in file 145

clear may be specified only when replace is specified. clear specifies that the data in memory
be cleared and replaced with the description information, even if the original data have not been
saved to disk.

The following option is available with describe but is not shown in the dialog box:

varlist, an option for programmers, specifies that, in addition to the usual stored results, r (varlist)
and r(sortlist) be stored, too. r(varlist) will contain the names of the variables in the
dataset. r(sortlist) will contain the names of the variables by which the data are sorted.

Options to describe data in file
short suppresses the specific information for each variable. Only the general information (number
of observations, number of variables, size, and sort order) is displayed.

simple displays only the variable names in a compact format. simple may not be combined with
other options.

The following option is available with describe but is not shown in the dialog box:

varlist, an option for programmers, specifies that, in addition to the usual stored results, r (varlist)
and r(sortlist) be stored, too. r(varlist) will contain the names of the variables in the
dataset. r(sortlist) will contain the names of the variables by which the data are sorted.

Because Stata/MP and Stata/SE can create truly large datasets, there might be too many variables
in a dataset for their names to be stored in r(varlist), given the current maximum length of
macros, as determined by set maxvar. Should that occur, describe using will issue the error
message “too many variables”, r(103).

Remarks and examples

Remarks are presented under the following headings:

describe
describe, replace

describe
If describe is typed with no operands, the contents of the dataset currently in memory are
described.

The varlist in the describe using syntax differs from standard Stata varlists in two ways. First,
you cannot abbreviate variable names; that is, you have to type displacement rather than displ.
However, you can use the abbreviation character (~) to indicate abbreviations, for example, displ-.
Second, you may not refer to a range of variables; specifying price-trunk is considered an error.

> Example 1

The basic description includes some general information on the number of variables and observations,
along with a description of every variable in the dataset:

146 describe — Describe data in memory or in file

. use http://www.stata-press.com/data/r14/states
(State data)

. describe, numbers
Contains data from http://www.stata-press.com/data/r14/states.dta

obs: 50 State data
vars: 5 3 Jan 2014 15:17
size: 1,100 (_dta has notes)
variable storage display value
name type format label variable label
1. state str8 %9s
2. region int %8.0g reg Census Region
3. median~e float %9.0g Median Age
4. marria~e long %12.0g Marriages per 100,000
5. divorc~e long %12.0g Divorces per 100,000

Sorted by: region

In this example, the dataset in memory comes from the file states.dta and contains 50 observations
on 5 variables. The dataset is labeled “State data” and was last modified on January 3, 2014, at
15:17 (3:17 p.m.). The “_dta has notes” message indicates that a note is attached to the dataset; see
[U] 12.7 Notes attached to data.

The first variable, state, is stored as a str8 and has a display format of %9s.

The next variable, region, is stored as an int and has a display format of %8.0g. This variable
has associated with it a value label called reg, and the variable is labeled Census Region.

The third variable, which is abbreviated median-e, is stored as a float, has a display format of
%9 .0g, has no value label, and has a variable label of Median Age. The variables that are abbreviated
marria~e and divorc-~e are both stored as longs and have display formats of %12.0g. These last
two variables are labeled Marriages per 100,000 and Divorces per 100,000, respectively.

The data are sorted by region.

Because we specified the numbers option, the variables are numbered; for example, region is
variable 2 in this dataset.

N

> Example 2
To view the full variable names, we could omit the numbers option and specify the fullnames
option.
. describe, fullnames
Contains data from http://www.stata-press.com/data/r14/states.dta

obs: 50 State data

vars: 5 3 Jan 2014 15:17

size: 1,100 (_dta has notes)

storage display value

variable name type format label variable label

state str8 %9s

region int %8.0g reg Census Region
median_age float %9.0g Median Age
marriage_rate long %12.0g Marriages per 100,000
divorce_rate long %12.0g Divorces per 100,000

Sorted by: region

describe — Describe data in memory or in file 147

Here we did not need to specify the fullnames option to see the unabbreviated variable names
because the longest variable name is 13 characters. Omitting the numbers option results in 15-character
variable names being displayed.

4

Q Technical note

The describe listing above also shows that the size of the dataset is 1,100. If you are curious,

(84+2+4+444) x50 = 1100

The numbers 8, 2, 4, 4, and 4 are the storage requirements for a str8, int, float, long, and
long, respectively; see [U] 12.2.2 Numeric storage types. Fifty is the number of observations in the

dataset.
a
> Example 3
If we specify the short option, only general information about the data is presented:
. describe, fullnames
Contains data from http://www.stata-press.com/data/r14/states.dta
obs: 50 State data
vars: 5 3 Jan 2014 15:17
size: 1,100 (_dta has notes)
storage display value
variable name type format label variable label
state str8 %9s
region int %8.0g reg Census Region
median_age float %9.0g Median Age
marriage_rate long %12.0g Marriages per 100,000
divorce_rate long %12.0g Divorces per 100,000
Sorted by: region
d

If we specify a varlist, only the variables in that varlist are described.

148 describe — Describe data in memory or in file

> Example 4

Let’s change datasets. The describe varlist command is particularly useful when combined with
the ‘*x’ wildcard character. For instance, we can describe all the variables whose names start with

pop by typing describe popx*:

. use http://www.stata-press.com/data/r14/census

(1980 Census data by state)

. describe pop*

storage display value
variable name type format label variable label
pop long %12.0gc Population
popltbs long %12.0gc Pop, < 5 year
pop5_17 long %12.0gc Pop, 5 to 17 years
popi18p long %12.0gc Pop, 18 and older
pop65p long %12.0gc Pop, 65 and older
popurban long %12.0gc Urban population

We can describe the variables state, region, and pop18p by specifying them:

. describe state region pop18p

storage display value
variable name type format label variable label
state stri4 %-14s State
region int %-8.0g cenreg Census region
pop18p long %12.0gc Pop, 18 and older

4

Typing describe using filename describes the data stored in filename. If an extension is not

specified, .dta is assumed.

> Example 5

We can describe the contents of states.dta without disturbing the data that we currently have

in memory by typing

. describe using http://www.stata-press.com/data/r14/states

Contains data

State data

obs: 50 3 Jan 2014 15:17

vars: 5

size: 1,300

storage display value

variable name type format label variable label

state str8 %9s
region int %8.0g reg Census Region
median_age float %9.0g Median Age
marriage_rate long %12.0g Marriages per 100,000
divorce_rate long %12.0g Divorces per 100,000

Sorted by: region

describe — Describe data in memory or in file 149

describe, replace

describe with the replace option is rarely used, although you may sometimes find it convenient.

Think of describe, replace as separate from but related to describe without the replace
option. Rather than producing a written report, describe, replace produces a new dataset that
contains the same information a written report would. For instance, try the following:

. sysuse auto, clear

. describe
(report appears; data in memory unchanged)

. list
(visual proof that data are unchanged)

. describe, replace
(no report appears, but the data in memory are changed!)

. list
(visual proof that data are changed)

describe, replace changes the original data in memory into a dataset containing an observation
for each variable in the original data. Each observation in the new data describes a variable in the
original data. The new variables are

1.
2.

position, a variable containing the numeric position of the original variable (1, 2, 3, ...).
name, a variable containing the name of the original variable, such as "make", "price",
"mpg",

type, a variable containing the storage type of the original variable, such as "stri8",
"int", "float",

isnumeric, a variable equal to 1 if the original variable was numeric and equal to O if it
was string.

format, a variable containing the display format of the original variable, such as "%-18s",
"Y8.0gc",

vallab, a variable containing the name of the value label associated with the original
variable, if any.

varlab, a variable containing the variable label of the original variable, such as "Make and
Model", "Price", "Mileage (mpg)",

In addition, the data contain the following characteristics:

_dtal[d_filename], the name of the file containing the original data.
_dta[d_filedate], the date and time the file was written.
_dta[d_N], the number of observations in the original data.

_dta[d_sortedbyl, the variables on which the original data were sorted, if any.

150 describe — Describe data in memory or in file

Stored results

describe stores the following in r():

Scalars
r(N) number of observations
r(k) number of variables
r(width) width of dataset

r(changed) flag indicating data have changed since last saved

Macros
r(varlist) variables in dataset (if varlist specified)
r(sortlist) variables by which data are sorted (if varlist specified)

describe, replace stores nothing in r().

References

Cox, N. J. 1999. dm67: Numbers of missing and present values. Stata Technical Bulletin 49: 7-8. Reprinted in Stata
Technical Bulletin Reprints, vol. 9, pp. 26-27. College Station, TX: Stata Press.

——. 2001. dm67.1: Enhancements to numbers of missing and present values. Stata Technical Bulletin 60: 2-3.
Reprinted in Stata Technical Bulletin Reprints, vol. 10, pp. 7-9. College Station, TX: Stata Press.

——. 2003. Software Updates: Numbers of present and missing values. Stata Journal 3: 449.
——. 2005. Software Updates: Numbers of present and missing values. Stata Journal 5: 607.

Gleason, J. R. 1998. dm61: A tool for exploring Stata datasets (Windows and Macintosh only). Stata Technical Bulletin
45: 2-5. Reprinted in Stata Technical Bulletin Reprints, vol. 8, pp. 22-27. College Station, TX: Stata Press.

——. 1999. dm61.1: Update to varxplor. Stata Technical Bulletin 51: 2. Reprinted in Stata Technical Bulletin Reprints,
vol. 9, p. 15. College Station, TX: Stata Press.

Also see
[D] ds — List variables matching name patterns or other characteristics
[D] varmanage — Manage variable labels, formats, and other properties
[D] ef — Compare two datasets
[D] codebook — Describe data contents
[D] compare — Compare two variables
[D] compress — Compress data in memory
[D] format — Set variables’ output format
[D] label — Manipulate labels
[D] lookfor — Search for string in variable names and labels
[D] notes — Place notes in data
[D] order — Reorder variables in dataset
[D] rename — Rename variable
[SVY] svydescribe — Describe survey data
[U] 6 Managing memory

http://www.stata.com/products/stb/journals/stb49.pdf
http://www.stata.com/products/stb/journals/stb60.pdf
http://www.stata-journal.com/sjpdf.html?articlenum=up0005
http://www.stata-journal.com/sjpdf.html?articlenum=up0013
http://www.stata.com/products/stb/journals/stb45.pdf
http://www.stata.com/products/stb/journals/stb51.pdf

Title

destring — Convert string variables to numeric variables and vice versa

Description Quick start Menu
Syntax Options for destring Options for tostring
Remarks and examples Acknowledgment References
Also see
Description

destring converts variables in varlist from string to numeric. If varlist is not specified, destring
will attempt to convert all variables in the dataset from string to numeric. Characters listed in ignore ()
are removed. Variables in varlist that are already numeric will not be changed. destring treats both
empty strings “” and “.” as indicating sysmiss (.) and interprets the strings “.a”, “.b”, ..., “.2” as
the extended missing values .a, .b, ..., .z; see [U] 12.2.1 Missing values. destring also ignores
any leading or trailing spaces so that, for example, is equivalent to “” and “ . ” is equivalent to

[Tt}

[T3EL)

tostring converts variables in varlist from numeric to string. The most compact string format
possible is used. Variables in varlist that are already string will not be converted.

Quick start

Convert strgl from string to numeric and place result in num1
destring strgl, generate(numl)

As above, but ignore the % character in strgl
destring strgl, generate(numl) ignore(%)

As above, but return . for observations with nonnumeric characters
destring strgl, generate(numl) force

Convert num2 from numeric to string and place result in strg?2
tostring num2, generate(strg2)

As above, but format with a comma and 2 digits after the decimal assuming no more than 5 digits
before the decimal
tostring num2, generate(strg2) format(%9.2fc)

As above, but format with a leading zero, no comma, and 3 digits after the decimal
tostring num2, generate(strg2) format(%09.3f)

Menu
destring

Data > Create or change data > Other variable-transformation commands > Convert variables from string to
numeric

tostring
Data > Create or change data > Other variable-transformation commands > Convert variables from numeric to

string

151

152 destring — Convert string variables to numeric variables and vice versa

Syntax

Convert string variables to numeric variables

destring [varlist] , {generate(newvarlisl) | replace } [destring_options]

Convert numeric variables to string variables

tostring varlist , {5enerate (newvarlist) | replace } [tostring_options]

destring _options Description
generate (newvarlist) generate newvary, ..., newvary for each variable in varlist
*replace replace string variables in varlist with numeric variables

ignore("chars" [, igm)re()ptsb remove specified nonnumeric characters, as characters or as

bytes, and illegal Unicode characters

force convert nonnumeric strings to missing values

float generate numeric variables as type float

percent convert percent variables to fractional form

dpcomma convert variables with commas as decimals to period-decimal
format

* Either generate (newvarlist) or replace is required.

tostring _options Description
* generate (newvarlist) generate newvary, ..., newvary, for each variable in varlist
*replace replace numeric variables in varlist with string variables
force force conversion ignoring information loss
format (format) convert using specified format
usedisplayformat convert using display format

* Either generate (newvarlist) or replace is required.

Options for destring

Either generate() or replace must be specified. With either option, if any string variable

contains nonnumeric characters not specified with ignore(), then no corresponding variable will be
generated, nor will that variable be replaced (unless force is specified).

generate (newvarlist) specifies that a new variable be created for each variable in varlist. newvarlist

must contain the same number of new variable names as there are variables in varlist. If varlist is
not specified, destring attempts to generate a numeric variable for each variable in the dataset;
newvarlist must then contain the same number of new variable names as there are variables in the
dataset. Any variable labels or characteristics will be copied to the new variables created.

replace specifies that the variables in varlist be converted to numeric variables. If varlist is not

specified, destring attempts to convert all variables from string to numeric. Any variable labels
or characteristics will be retained.

destring — Convert string variables to nhumeric variables and vice versa 153

ignore("chars" [s ignoreopts]) specifies nonnumeric characters be removed. ignoreopts may be
aschars, asbytes, or illegal. The default behavior is to remove characters as characters,
which is the same as specifying aschars. asbytes specifies removal of all bytes included in all
characters in the ignore string, regardless of whether these bytes form complete Unicode characters.
illegal specifies removal of all illegal Unicode characters, which is useful for removing high-
ASCII characters. i1legal may not be specified with asbytes. If any string variable still contains
any nonnumeric or illegal Unicode characters after the ignore string has been removed, no action
will take place for that variable unless force is also specified. Note that to Stata the comma is a
nonnumeric character; see also the dpcomma option below.

force specifies that any string values containing nonnumeric characters, in addition to any specified
with ignore(), be treated as indicating missing numeric values.

float specifies that any new numeric variables be created initially as type float. The default is type
double; see [D] data types. destring attempts automatically to compress each new numeric
variable after creation.

percent removes any percent signs found in the values of a variable, and all values of that variable
are divided by 100 to convert the values to fractional form. percent by itself implies that the
percent sign, “%”, is an argument to ignore (), but the converse is not true.

dpcomma specifies that variables with commas as decimal values should be converted to have periods
as decimal values.

Options for tostring

Either generate() or replace must be specified. If converting any numeric variable to string
would result in loss of information, no variable will be produced unless force is specified. For more
details, see force below.

generate (newvarlist) specifies that a new variable be created for each variable in varlist. newvarlist
must contain the same number of new variable names as there are variables in varlist. Any variable
labels or characteristics will be copied to the new variables created.

replace specifies that the variables in varlist be converted to string variables. Any variable labels
or characteristics will be retained.

force specifies that conversions be forced even if they entail loss of information. Loss of information
means one of two circumstances: 1) The result of real (string(varname, "format")) is not
equal to varname; that is, the conversion is not reversible without loss of information; 2) replace
was specified, but a variable has associated value labels. In circumstance 1, it is usually best to
specify usedisplayformat or format (). In circumstance 2, value labels will be ignored in a
forced conversion. decode (see [D] encode) is the standard way to generate a string variable based
on value labels.

format (format) specifies that a numeric format be used as an argument to the string() function,
which controls the conversion of the numeric variable to string. For example, a format of %7.2f
specifies that numbers are to be rounded to two decimal places before conversion to string. See
Remarks and examples below and [FN] String functions and [D] format. format () cannot be
specified with usedisplayformat.

usedisplayformat specifies that the current display format be used for each variable. For example,
this option could be useful when using U.S. Social Security numbers or daily or other dates with
some %d or %t format assigned. usedisplayformat cannot be specified with format ().

154 destring — Convert string variables to numeric variables and vice versa

Remarks and examples

Remarks are presented under the following headings:

destring

> Example 1

destring
tostring

We read in a dataset, but somehow all the variables were created as strings. The variables contain
no nonnumeric characters, and we want to convert them all from string to numeric data types.

. use http://www.stata-press.com/data/r14/destringil

. describe

Contains data from http://www.stata-press.com/data/r14/destringl.dta

obs: 10
vars: 5 3 Mar 2014 10:15
size: 200
storage display value
variable name type format label variable label
id str3 %9s
num str3 %9s
code stréd %9s
total strb %9s
income strb %9s
Sorted by:
. list
id num code total income
1. 111 243 1234 543 23423
2. 111 123 2345 67854 12654
3. 111 234 3456 345 43658
4. 222 345 4567 57 23546
5. 333 456 5678 23 21432
6. 333 567 6789 23465 12987
7. 333 678 7890 65 9823
8. 444 789 8976 23 32980
9. 444 901 7654 23 18565
10. 565 890 6543 423 19234

. destring, replace
id has all characters numeric; replaced as int

num has all characters numeric; replaced as int
code has all characters numeric; replaced as int
total has all characters numeric; replaced as long
income has all characters numeric; replaced as long

destring — Convert string variables to numeric variables and vice versa 155

. describe

Contains data from http://www.stata-press.com/data/r14/destringl.dta

obs: 10
vars: 5 3 Mar 2014 10:15
size: 140
storage display value
variable name type format label variable label
id int %10.0g
num int %10.0g
code int %10.0g
total long %10.0g
income long %10.0g
Sorted by:
Note: Dataset has changed since last saved.
. list
id num code total income
1. 111 243 1234 543 23423
2. 111 123 2345 67854 12654
3. 111 234 3456 345 43658
4. 222 345 4567 57 23546
5. 333 456 5678 23 21432
6. 333 567 6789 23465 12987
7. 333 678 7890 65 9823
8. 444 789 8976 23 32980
9. 444 901 7654 23 18565
10. 565 890 6543 423 19234
d
> Example 2

Our dataset contains the variable date, which was accidentally recorded as a string because of
spaces after the year and month. We want to remove the spaces. destring will convert it to numeric
and remove the spaces.

. use http://www.stata-press.com/data/ri14/destring2, clear
. describe date

storage display value
variable name type format label variable label

date stri4 %10s

156 destring — Convert string variables to numeric variables and vice versa

. list date

date

1999 12 10
2000 07 08
1997 03 02
1999 09 00
1998 10 04

O WN e

2000 03 28
2000 08 08
1997 10 20
1998 01 16
1999 11 12

O W ~NO»

[ure

. destring date, replace ignore(" ")
date: characters space removed; replaced as long

. describe date

storage display value
variable name type format label variable label

date long %10.0g
. list date

date

19991210
20000708
19970302
19990900
19981004

O WN -

20000328
20000808
19971020
19980116
19991112

O © o0 ~NO»

e

> Example 3

Our dataset contains the variables date, price, and percent. These variables were accidentally
read into Stata as string variables because they contain spaces, dollar signs, commas, and percent signs.
We want to remove all of these characters and create new variables for date, price, and percent
containing numeric values. After removing the percent sign, we want to convert the percent variable
to decimal form.

destring — Convert string variables to numeric variables and vice versa

157

. use http://www.stata-press.com/data/ri14/destring2, clear

. describe

Contains data from http://www.stata-press.com/data/ri14/destring2.dta

obs: 10
vars: 3 3 Mar 2014 22:50
size: 280
storage display value
variable name type format label variable label
date stri4 %10s
price stril %lis
percent str3 %9s
Sorted by:
. list
date price percent
1. 1999 12 10 $2,343.68 347
2. 2000 07 08 $7,233.44 867
3. 1997 03 02 $12,442.89 129,
4. 1999 09 00 $233,325.31 6%
5. 1998 10 04 $1,549.23 76%
6. 2000 03 28 $23,517.03 35%
7. 2000 08 08 $2.43 69%
8. 1997 10 20 $9,382.47 32%
9. 1998 01 16 $289,209.32 45%
10. 1999 11 12 $8,282.49 1%

. destring date price percent, generate(date2 price2 percent2) ignore("$,%")

> percent

date: characters space removed; date2 generated as long
price: characters $, removed; price2 generated as double
percent: characters J removed; percent2 generated as double

. describe

Contains data from http://www.stata-press.com/data/ri14/destring2.dta

obs: 10
vars: 6 3 Mar 2014 22:50
size: 480
storage display value
variable name type format label variable label
date stri4 %10s
date2 long %10.0g
price stril %lis
price2 double %10.0g
percent str3 %9s
percent2 double %10.0g
Sorted by:

Note: Dataset has changed since last saved.

158 destring — Convert string variables to numeric variables and vice versa

. list
date date2 price price2 percent percent2
1. 1999 12 10 19991210 $2,343.68 2343.68 347, .34
2. 2000 07 08 20000708 $7,233.44 7233.44 86% .86
3. 1997 03 02 19970302 $12,442.89 12442.89 12% .12
4. 1999 09 00 19990900 $233,325.31 233325.31 6% .06
5. 1998 10 04 19981004 $1,549.23 1549.23 6% .76
6. 2000 03 28 20000328 $23,517.03 23517.03 35% .35
7. 2000 08 08 20000808 $2.43 2.43 69% .69
8. 1997 10 20 19971020 $9,382.47 9382.47 32% .32
9. 1998 01 16 19980116 $289,209.32 289209.32 45, .45
10. 1999 11 12 19991112 $8,282.49 8282.49 1% .01

tostring

Conversion of numeric data to string equivalents can be problematic. Stata, like most software,
holds numeric data to finite precision and in binary form. See the discussion in [U] 13.12 Precision
and problems therein. If no format () is specified, tostring uses the format %12.0g. This format
is, in particular, sufficient to convert integers held as bytes, ints, or longs to string equivalent without
loss of precision.

However, users will often need to specify a format themselves, especially when the numeric data
have fractional parts and for some reason a conversion to string is required.

> Example 4

Our dataset contains a string month variable and numeric year and day variables. We want to
convert the three variables to a %td date.

. use http://www.stata-press.com/data/r14/tostring, clear

. list
id month day year
1. 123456789 jan 10 2001
2. 123456710 mar 20 2001
3. 123456711 may 30 2001
4. 123456712 jun 9 2001
5. 123456713 oct 17 2001
6. 123456714 nov 15 2001
7. 123456715 dec 28 2001
8. 123456716 apr 29 2001
9. 123456717 mar 11 2001
10. 123456718 jul 3 2001

. tostring year day, replace
year was float now stré
day was float now str2

. generate date = month + "/" + day + "/" + year
. generate edate = date(date, "MDY")
. format edate %td

destring — Convert string variables to numeric variables and vice versa 159

. list
id month day year date edate
1. 123456789 jan 10 2001 jan/10/2001 10jan2001
2. 123456710 mar 20 2001 mar/20/2001 20mar2001
3. 123456711 may 30 2001 may/30/2001 30may2001
4. 123456712 jun 9 2001 jun/9/2001 09jun2001
5. 123456713 oct 17 2001 oct/17/2001 170ct2001
6. 123456714 nov 15 2001 nov/15/2001 15n0v2001
7. 123456715 dec 28 2001 dec/28/2001 28dec2001
8. 123456716 apr 29 2001 apr/29/2001 29apr2001
9. 123456717 mar 11 2001 mar/11/2001 11mar2001
10. 123456718 jul 3 2001 jul/3/2001 03jul2001

Saved characteristics

Each time the destring or tostring commands are issued, an entry is made in the characteristics
list of each converted variable. You can type char list to view these characteristics.

After example 3, we could use char list to find out what characters were removed by the
destring command.

. char list

date2[destring]: Characters removed were: space

date2[destring_cmd]: destring date price percent, generate(date2 pri..

price2[destring]: Characters removed were: $,

price2[destring_cmd]: destring date price percent, generate(date2 pri..

percent2[destring]: Characters removed were: Y%

percent2[destring_cmd] : destring date price percent, generate(date2 pri..
Acknowledgment

destring and tostring were originally written by Nicholas J. Cox of the Department of
Geography at Durham University, UK, and coeditor of the Stata Journal and author of Speaking Stata
Graphics.

References

Cox, N. J. 1999a. dm45.1: Changing string variables to numeric: Update. Stata Technical Bulletin 49: 2. Reprinted
in Stata Technical Bulletin Reprints, vol. 9, p. 14. College Station, TX: Stata Press.

——. 1999b. dm45.2: Changing string variables to numeric: Correction. Stata Technical Bulletin 52: 2. Reprinted in
Stata Technical Bulletin Reprints, vol. 9, p. 14. College Station, TX: Stata Press.

——. 2011. Speaking Stata: MMXI and all that: Handling Roman numerals within Stata. Stata Journal 11: 126-142.

Cox, N. J., and W. W. Gould. 1997. dm45: Changing string variables to numeric. Stata Technical Bulletin 37: 4-6.
Reprinted in Stata Technical Bulletin Reprints, vol. 7, pp. 34-37. College Station, TX: Stata Press.

Cox, N. J., and J. B. Wernow. 2000a. dm80: Changing numeric variables to string. Stata Technical Bulletin 56: 8—12.
Reprinted in Stata Technical Bulletin Reprints, vol. 10, pp. 24-28. College Station, TX: Stata Press.

——. 2000b. dm80.1: Update to changing numeric variables to string. Stata Technical Bulletin 57: 2. Reprinted in
Stata Technical Bulletin Reprints, vol. 10, pp. 28-29. College Station, TX: Stata Press.

Jeanty, P. W. 2013. Dealing with identifier variables in data management and analysis. Stata Journal 13: 699-718.

http://www.stata-journal.com/
http://www.stata-press.com/books/speaking-stata-graphics/
http://www.stata-press.com/books/speaking-stata-graphics/
http://www.stata.com/products/stb/journals/stb49.pdf
http://www.stata.com/products/stb/journals/stb52.pdf
http://www.stata-journal.com/sjpdf.html?articlenum=dm0054
http://www.stata.com/products/stb/journals/stb37.pdf
http://www.stata.com/products/stb/journals/stb56.pdf
http://www.stata.com/products/stb/journals/stb57.pdf
http://www.stata-journal.com/article.html?article=dm0071

160 destring — Convert string variables to numeric variables and vice versa

Also see
[D] egen — Extensions to generate
[D] encode — Encode string into numeric and vice versa
[D] generate — Create or change contents of variable
[D] split — Split string variables into parts
[FN] String functions

Title

dir — Display filenames

Description Quick start Syntax Option Remarks and examples
Also see

Description

dir and 1ls—they work the same way—Ilist the names of files in the specified directory; the
names of the commands come from names popular on Unix and Windows computers.

Quick start
List the names of all files in the current directory using Stata for Windows
dir
As above, but for Mac or Unix

1s

List Stata datasets in the current directory using Stata for Windows
dir *.dta

As above, but for Mac or Unix
1ls *.dta

List dataset name for all .dta in the C:\ directory using Stata for Windows
dir C:*.dta

List dataset name for all .dta files in the home directory using Stata for Mac or Unix
1ls ~/*.dta

Syntax
{dir | 1s} [“} [ﬁlespec] ["] [, gide}

filespec is any valid Mac, Unix, or Windows file path or file specification (see [U] 11.6 Filenaming
conventions) and may include ‘*’ to indicate any string of characters.

Note: Double quotes must be used to enclose filespec if the name contains spaces.

Option

wide under Mac and Windows produces an effect similar to specifying /W with the DOS dir
command—it compresses the resulting listing by placing more than one filename on a line. Under
Unix, it produces the same effect as typing 1s -F -C. Without the wide option, 1s is equivalent
to typing 1s -F -1.

161

162 dir — Display filenames

Remarks and examples

Mac and Unix: The only difference between the Stata and Unix 1s commands is that piping
through the more(1) or pg(1l) filter is unnecessary—Stata always pauses when the screen is full.

Windows: Other than minor differences in presentation format, there is only one difference between
the Stata and DOS dir commands: the DOS /P option is unnecessary, because Stata always pauses
when the screen is full.

> Example 1

If you use Stata for Windows and wish to obtain a list of all your Stata-format data files, type

. dir *.dta
3.9k 7/07/15 13:51 auto.dta

0.6k 8/04/15 10:40 cancer.dta

3.5k 7/06/08 17:06 census.dta

3.4k 1/25/08 9:20 hsng.dta

0.3k 1/26/08 16:54 kva.dta

0.7k 4/27/11 11:39 sysage.dta

0.5k 5/09/07 2:56 systolic.dta

10.3k 7/13/08 8:37 Household Survey.dta

You could also include the wide option:

. dir *.dta, wide

3.9k auto.dta 0.6k cancer.dta 3.5k census.dta
3.4k hsng.dta 0.3k kva.dta 0.7k sysage.dta
0.5k systolic.dta 10.3k Household Survey.dta

Unix users will find it more natural to type

. 1ls *.dta

“rW-r-—--- 1 roger 2868 Mar 4 15:34 highway.dta
-rw-r----- 1 roger 941 Apr 5 09:43 hoyle.dta
-rw-r----- 1 roger 19312 May 14 10:36 pl.dta
“IrW-r----- 1 roger 11838 Apr 11 13:26 p2.dta

but they could type dir if they preferred. Mac users may also type either command.

. dir *.dta

“rw-r----- 1 roger 2868 Mar 4 15:34 highway.dta
-rw-r----- 1 roger 941 Apr 5 09:43 hoyle.dta
-rw-r----- 1 roger 19312 May 14 10:36 pl.dta
“Irw-r----- 1 roger 11838 Apr 11 13:26 p2.dta

Q Technical note

There is an extended macro function named dir which allows you to obtain a list of files in a
macro for later processing. See Macro extended functions for filenames and file paths in [P] macro.
a

dir — Display filenames 163

Also see
[D] ed — Change directory
[D] copy — Copy file from disk or URL
[D] erase — Erase a disk file
[D] mkdir — Create directory
[D] rmdir — Remove directory
[D] shell — Temporarily invoke operating system
[D] type — Display contents of a file

[U] 11.6 Filenaming conventions

Title

drawnorm — Draw sample from multivariate normal distribution

Description Quick start Menu Syntax
Options Remarks and examples Methods and formulas References
Also see

Description

drawnorm draws a sample from a multivariate normal distribution with desired means and covariance
matrix. The default is orthogonal data with mean O and variance 1. The covariance matrix may be
singular. The values generated are a function of the current random-number seed or the number
specified with set seed(); see [R] set seed.

Quick start

Generate independent variables x and y, where x has mean 2 and standard deviation 0.5 and y has
mean 3 and standard deviation 1

drawnorm x y, means(2,3) sds(.5,1)

As above, but create dataset of 1,000 observations on x and y with means stored in vector m and
standard deviations stored in vector sd

drawnorm x y, means(m) sds(sd) n(1000)

As above, and set the seed for the random-number generator to reproduce results
drawnorm x y, means(m) sds(sd) n(1000) seed(81625)

Sample from bivariate standard normal distribution with covariance between x and y of 0.5 stored in
variance—covariance matrix C
matrix C = (1, .5 \ .5, 1)
drawnorm x y, cov(C)

Sample from a trivariate standard normal distribution with correlation between x and y of 0.4, x and
z of 0.3, and y and z of 0.6 stored in correlation matrix C
matrix C = (1, .4, .3\ .4, 1, .6 \ .3, .6, 1)
drawnorm x y z, corr(C)

Same as above, but avoid typing full matrix by specifying correlations in vector v treated as a lower
triangular matrix
matrix v = (1, .4, 1, .3, .6, 1)
drawnorm x y z, corr(v) cstorage(lower)

Menu

Data > Create or change data > Other variable-creation commands > Draw sample from normal distribution

164

drawnorm — Draw sample from multivariate normal distribution 165

corr (matrix | vector)
cov (matrix | vector)

Syntax
drawnorm newvarlist [, options]
options Description
Main
clear replace the current dataset
double generate variable type as double; default is float
n(#) # of observations to be generated; default is current number
sds (vector) standard deviations of generated variables

correlation matrix
covariance matrix

cstorage (full) correlation/covariance structure is stored as a symmetric kxk matrix
cstorage (lower) correlation/covariance structure is stored as a lower triangular matrix
cstorage (upper) correlation/covariance structure is stored as an upper triangular matrix
forcepsd force the covariance/correlation matrix to be positive semidefinite

means (vector) means of generated variables; default is means (0)

Options

seed (#) seed for random-number generator

Options

Main

clear specifies that the dataset in memory be replaced, even though the current dataset has not been
saved on disk.

double specifies that the new variables be stored as Stata doubles, meaning 8-byte reals. If double
is not specified, variables are stored as floats, meaning 4-byte reals. See [D] data types.

n(#) specifies the number of observations to be generated. The default is the current number of
observations. If n(#) is not specified or is the same as the current number of observations,
drawnorm adds the new variables to the existing dataset; otherwise, drawnorm replaces the data
in memory.

sds (vector) specifies the standard deviations of the generated variables. sds () may not be specified
with cov().

corr (matrix | vector) specifies the correlation matrix. If neither corr() nor cov() is specified, the
default is orthogonal data.

cov (matrix | vector) specifies the covariance matrix. If neither cov() nor corr () is specified, the
default is orthogonal data.

cstorage(full | lower | upper) specifies the storage mode for the correlation or covariance structure
in corr() or cov(). The following storage modes are supported:

full specifies that the correlation or covariance structure is stored (recorded) as a symmetric kX k
matrix.

lower specifies that the correlation or covariance structure is recorded as a lower triangular matrix.
With k variables, the matrix should have k(k + 1)/2 elements in the following order:

166 drawnorm — Draw sample from multivariate normal distribution

C11 Cg1 Cog C31 C32 C33 ... Cp1 Cra ... Cpp

upper specifies that the correlation or covariance structure is recorded as an upper triangular
matrix. With & variables, the matrix should have k(k + 1)/2 elements in the following order:

C11 C12Cy3 ... C1p C22 Ca3 ... Cop +.. Crmrp—1) Crr—1r) Crk

Specifying cstorage (full) is optional if the matrix is square. cstorage(lower) or cstor-
age (upper) is required for the vectorized storage methods. See Example 2: Storage modes for
correlation and covariance matrices.

forcepsd modifies the matrix C to be positive semidefinite (psd), and so be a proper covariance
matrix. If C is not positive semidefinite, it will have negative eigenvalues. By setting negative
eigenvalues to 0 and reconstructing, we obtain the least-squares positive-semidefinite approximation
to C. This approximation is a singular covariance matrix.

means (vector) specifies the means of the generated variables. The default is means (0).

seed (#) specifies the initial value of the random-number seed used by the runiform() function.
The default is the current random-number seed. Specifying seed (#) is the same as typing set
seed # before issuing the drawnorm command.

Remarks and examples

> Example 1

Suppose that we want to draw a sample of 1,000 observations from a normal distribution N (M, V),
where M is the mean matrix and V is the covariance matrix:

. matrix M = 5, -6, 0.5
. matrix V.= (9, 5, 2\ 5,4, 1\2, 1, 1)
. matrix list M

M[1,3]
cl c2 «c3
rl 5 -6 .5

. matrix list V

symmetric V[3,3]

cl c2 «c3
rl 9
r2 5 4

r3 2 1 1

. drawnorm x y z, n(1000) cov(V) means(M)

(obs 1,000)
. summarize
Variable Obs Mean Std. Dev. Min Max
X 1,000 5.061905 3.085248 -4.916674 14.45134

y 1,000 -5.932852 2.038645 -12.87877 .9326401
z 1,000 .5117613 1.022955 -2.760605 3.568681

drawnorm — Draw sample from multivariate normal distribution 167

. correlate, cov
(obs=1,000)

X y z

X 9.51875
y 5.28888 4.15608
z 2.13096 1.05388 1.04644

Q Technical note

The values generated by drawnorm are a function of the current random-number seed. To reproduce
the same dataset each time drawnorm is run with the same setup, specify the same seed number in
the seed () option.

a

> Example 2: Storage modes for correlation and covariance matrices

The three storage modes for specifying the correlation or covariance matrix in corr2data and
drawnorm can be illustrated with a correlation structure, C, of 4 variables. In full storage mode, this
structure can be entered as a 4 X 4 Stata matrix:

. matrix C = (1.0000, 0.3232, 0.1112, 0.0066 \ ///
0.3232, 1.0000, 0.6608, -0.1572 \ ///
0.1112, 0.6608, 1.0000, -0.1480 \ ///
0.0066, -0.1572, -0.1480, 1.0000)

Elements within a row are separated by commas, and rows are separated by a backslash, \. We
use the input continuation operator /// for convenient multiline input; see [P] comments. In this
storage mode, we probably want to set the row and column names to the variable names:

matrix rownames C
matrix colnames C

price trunk headroom rep78
price trunk headroom rep78

This correlation structure can be entered more conveniently in one of the two vectorized storage
modes. In these modes, we enter the lower triangle or the upper triangle of C in rowwise order; these
two storage modes differ only in the order in which the k(k + 1)/2 matrix elements are recorded.
The lower storage mode for C comprises a vector with 4(4 4+ 1)/2 = 10 elements, that is, a 1 x 10
or 10 x 1 Stata matrix, with one row or column,

matrix C = (1.0000, ///
0.3232, 1.0000, ///
0.1112, 0.6608, 1.0000, ///
0.0066, -0.1572, -0.1480, 1.0000)

or more compactly as

matrix C = (1, 0.3232, 1, 0.1112, 0.6608, 1, 0.0066, -0.1572, -0.1480, 1)

C may also be entered in upper storage mode as a vector with 4(4 + 1)/2 = 10 elements, that is,
alx10or 10 x 1 Stata matrix,

matrix ¢ = (1.0000, 0.3232, 0.1112, 0.0066, ///
1.0000, 0.6608, -0.1572, ///
1.0000, -0.1480, ///

1.0000)

168 drawnorm — Draw sample from multivariate normal distribution

or more compactly as

matrix C = (1, 0.3232, 0.1112, 0.0066, 1, 0.6608, -0.1572, 1, -0.1480, 1)

Methods and formulas

Results are asymptotic. The more observations generated, the closer the correlation matrix of the
dataset is to the desired correlation structure.

Let V = A’A be the desired covariance matrix and M be the desired mean matrix. We first
generate X, such that X ~ N(0,1). Let Y = A’X + M, then Y ~ N(M, V).

References

Gould, W. W. 2012a. Using Stata’s random-number generators, part 2: Drawing without replacement. The Stata Blog:
Not Elsewhere Classified.
http://blog.stata.com/2012/08/03/using-statas-random-number-generators-part-2-drawing-without-replacement/.

——. 2012b. Using Stata’s random-number generators, part 3: Drawing with replacement. The Stata Blog:
Not Elsewhere Classified. http://blog.stata.com/2012/08/29/using-statas-random-number-generators-part-3-drawing-
with-replacement/.

Also see

[D] corr2data — Create dataset with specified correlation structure

[R] set seed — Specify random-number seed and state

http://blog.stata.com/2012/08/03/using-statas-random-number-generators-part-2-drawing-without-replacement/
http://blog.stata.com/2012/08/03/using-statas-random-number-generators-part-2-drawing-without-replacement/
http://blog.stata.com/2012/08/29/using-statas-random-number-generators-part-3-drawing-with-replacement/
http://blog.stata.com/2012/08/29/using-statas-random-number-generators-part-3-drawing-with-replacement/

Title

drop — Drop variables or observations

Description Quick start Menu
Syntax Remarks and examples Reference
Also see

Description

drop eliminates variables or observations from the data in memory.

keep works the same way as drop, except that you specify the variables or observations to be
kept rather than the variables or observations to be deleted.

Warning: drop and keep are not reversible. Once you have eliminated observations, you cannot
read them back in again. You would need to go back to the original dataset and read it in again.
Instead of applying drop or keep for a subset analysis, consider using if or in to select subsets
temporarily. This is usually the best strategy. Alternatively, applying preserve followed in due course
by restore may be a good approach.

Quick start

Remove v1, v2, and v3 from memory
drop vl v2 v3

Remove all variables whose name begins with code from memory
drop codex

Remove observations where v1 is equal to 99
drop if v1==99

Also drop observations where v1 equals 88 or v2 is missing
drop if inlist(v1,88,99) | missing(v2)
Keep observations where v3 is not missing

keep if !missing(v3)

Keep the first observation from each cluster identified by cvar
by cvar: keep if _n==

Menu
Drop or keep variables
Data > Variables Manager
Drop or keep observations

Data > Create or change data > Drop or keep observations

169

170 drop — Drop variables or observations

Syntax
Drop variables

drop varlist

Drop observations

drop if exp
Drop a range of observations

drop in range [if exp]

Keep variables

keep varlist

Keep observations that satisty specified condition

keep if exp
Keep a range of observations
keep in range [if exp]

by is allowed with the second syntax of drop and the second syntax of keep; see [D] by.

Remarks and examples

You can clear the entire dataset by typing drop —all without affecting value labels, macros, and
programs. (Also see [U] 12.6 Dataset, variable, and value labels, [U] 18.3 Macros, and [P] program.)

drop — Drop variables or observations 171

> Example 1

We will systematically eliminate data until, at the end, no data are left in memory. We begin by

describing the data:

. use http://www.stata-press.com/data/r14/censusil
(1980 Census data by state)

. describe

Contains data from http://www.stata-press.com/data/r14/censusil.dta

obs: 50 1980 Census data by state
vars: 15 2 Dec 2014 14:31
size: 3,200
storage display value
variable name type format label variable label
state stri3 %-13s State
state2 str2 %-2s Two-letter state abbreviation
region byte %-8.0g cenreg Census region
pop long %12.0gc Population
popltbs long %12.0gc Pop, < 5 year
pop5_17 long %12.0gc Pop, 5 to 17 years
popl18p long %12.0gc Pop, 18 and older
pop65p long %12.0gc Pop, 65 and older
popurban long %12.0gc Urban population
medage float %9.2f Median age
death long %12.0gc Number of deaths
marriage long %12.0gc Number of marriages
divorce long %12.0gc Number of divorces
mrgrate float %9.0g Marriage rate
dvcrate float %9.0g Divorce rate

Sorted by: region

We can eliminate all the variables with names that begin with pop by typing drop pop*:

172

drop — Drop variables or observations

Let’s

. drop pop*
. describe

Contains data from http://www.stata-press.com/data/r14/censusll.dta

obs: 50 1980 Census data by state

vars: 9 2 Dec 2014 14:31

size: 2,000

storage display value

variable name type format label variable label

state stri3 %-13s State

state2 str2 %-2s Two-letter state abbreviation
region byte %-8.0g cenreg Census region
medage float %9.2f Median age
death long %12.0gc Number of deaths
marriage long %12.0gc Number of marriages
divorce long %12.0gc Number of divorces
mrgrate float %9.0g Marriage rate
dvcrate float %9.0g Divorce rate

Sorted by: region

Note: Dataset has changed since last saved.
eliminate more variables and then eliminate observations:
. drop marriage divorce mrgrate dvcrate
. describe

Contains data from http://www.stata-press.com/data/r14/censuslil.dta

obs: 50 1980 Census data by state

vars: 5 2 Dec 2014 14:31

size: 1,200

storage display value

variable name type format label variable label

state stri3 %-13s State

state2 str2 %-2s Two-letter state abbreviation
region byte %-8.0g cenreg Census region
medage float %9.2f Median age
death long %12.0gc Number of deaths

Sorted by: region
Note: Dataset has changed since last saved.

Next we will drop any observation for which medage is greater than 32.

. drop if medage > 32
(3 observations deleted)

Let’s drop the first observation in each region:

. by region: drop if _n==1
(4 observations deleted)

Now we drop all but the last observation in each region:

. by region: drop if _n!=_N
(39 observations deleted)

Let’s now drop the first 2 observations in our dataset:

. drop in 1/2
(2 observations deleted)

drop — Drop variables or observations 173

Finally, let’s get rid of everything:

. drop _all
. describe

Contains data

obs: 0
vars: 0
size: 0

Sorted by:

Typing keep in 10/1 is the same as typing drop in 1/9.
Typing keep if x==3 is the same as typing drop if x !=3.

keep is especially useful for keeping a few variables from a large dataset. Typing keep myvaril
myvar2 is the same as typing drop followed by all the variables in the dataset except myvarl and
myvar2.

Q Technical note

In addition to dropping variables and observations, drop —all removes any business calendars;
see [D] datetime business calendars.
a

Reference

Cox, N. J. 2001. dm89: Dropping variables or observations with missing values. Stata Technical Bulletin 60: 7-8.
Reprinted in Stata Technical Bulletin Reprints, vol. 10, pp. 44-46. College Station, TX: Stata Press.

Also see

[D] clear — Clear memory
[D] varmanage — Manage variable labels, formats, and other properties
[U] 11 Language syntax

[U] 13 Functions and expressions

http://www.stata.com/products/stb/journals/stb60.pdf

Title

ds — List variables matching name patterns or other characteristics

Description Quick start Menu Syntax
Options Remarks and examples Stored results Acknowledgments
References Also see

Description

ds lists variable names of the dataset currently in memory in a compact or detailed format, and
lets you specify subsets of variables to be listed, either by name or by properties (for example, the
variables are numeric). In addition, ds leaves behind in r (varlist) the names of variables selected
so that you can use them in a subsequent command.

ds, typed without arguments, lists all variable names of the dataset currently in memory in a
compact form.

Quick start

List variables in alphabetical order
ds, alpha

List all string variables
ds, has(type string)

List all numeric variables
ds, has(type numeric)

As above, but exclude date-formatted variables
ds, not(format %td* type string)

List all variables whose label includes the phrase “my text” regardless of case
ds, has(varlabel "#my text*") insensitive

Menu

Data > Describe data > Compactly list variable names

174

ds — List variables matching name patterns or other characteristics

175

Syntax
Simple syntax

ds [, glpha]

Advanced syntax

ds [varlist] [, options]

options Description
Main
not list variables not specified in varlist
alpha list variables in alphabetical order
detail display additional details
varwidth (#) display width for variable names; default is varwidth(12)
skip(#) gap between variables; default is skip(2)
Advanced
has (spec) describe subset that matches spec
not (spec) describe subset that does not match spec
insensitive perform case-insensitive pattern matching
indent (#) indent output; seldom used

insensitive and indent (#) are not shown in the dialog box.

spec

Description

type typelist

format patternlist
varlabel [patternlist]
char [patternlist]
vallabel [patternlist]

specified types

display format matching patternlist

variable label or variable label matching patternlist
characteristic or characteristic matching patternlist
value label or value label matching patternlist

176 ds — List variables matching name patterns or other characteristics

typelist used in has (type typelist) and not (type typelist) is a list of one or more types, each of
which may be numeric, string, str#, strL, byte, int, long, float, or double, or may be
a numlist such as 1/8 to mean “strl str2 ... str8”. Examples include

has(type int)

has(type byte int long)
not (type int)

not (type byte int long)
has(type numeric)

not (type string)

has (type 1/40)
has(type str#)

has (type strL)

has (type numeric 1/2)

is
is
is
is
is
is
is
is
is
is

of type int

of integer type

not of type int

not of the integer types

a numeric variable

not a string (str# or strL) variable (same as above)
strl, str2, ..., str40

stri, str2, ..., str2045 but not strL

of type strL but not str#

numeric or strl or str2

patternlist used in, for instance, has (format patternlist), is a list of one or more patterns. A pattern
is the expected text with the addition of the characters * and 7. * indicates O or more characters
go here, and 7 indicates exactly 1 character goes here. Examples include

has (format *f)

has(format %t*)

has (format %-*s)

has(varl *weight*)
has(varl *weight* *Weight*)

format is %#.#f
has time or date format

is

a left-justified string

variable label includes word weight
variable label has weight or Weight

To match a phrase, enclose the phrase in quotes.

has(varl "*some phrasex")

variable label has some phrase

If instead you used has(varl *some phrasex), then only variables having labels ending in some

or starting with phrase would be listed.

Options
Main

not specifies that the variables in varlist not be listed. For instance, ds pop*, not specifies that all
variables not starting with the letters pop be listed. The default is to list all the variables in the
dataset or, if varlist is specified, the variables specified.

alpha specifies that the variables be listed in alphabetical order. If the variable contains Unicode
characters other than plain ASCII, the sort order is determined strictly by the underlying byte order.
See [U] 12.4.2.5 Sorting strings containing Unicode characters.

detail specifies that detailed output identical to that of describe be produced. If detail is
specified, varwidth(), skip(), and indent () are ignored.

varwidth(#) specifies the display width of the variable names; the default is varwidth(12).

skip(#) specifies the number of spaces between variable names, where all variable names are
assumed to be the length of the longest variable name; the default is skip(2).

ds — List variables matching name patterns or other characteristics 177

Advanced

has (spec) and not (spec) select from the dataset (or from varlist) the subset of variables that meet
or fail the specification spec. Selection may be made on the basis of storage type, variable label,
value label, display format, or characteristics. Only one not, has(), or not () option may be
specified.

has(type string) selects all string variables. Typing ds, has(type string) would list all
string variables in the dataset, and typing ds pop*, has(type string) would list all string
variables whose names begin with the letters pop.

has(varlabel) selects variables with defined variable labels. has (varlabel *weight*) selects
variables with variable labels including the word “weight”. not (varlabel) would select all
variables with no variable labels.

has(vallabel) selects variables with defined value labels. has(vallabel yesno) selects vari-
ables whose value label is yesno. has(vallabel *no) selects variables whose value label ends
in the letters no.

has (format patternlist) specifies variables whose format matches any of the patterns in patternlist.
has(format *f) would select all variables with formats ending in £, which presumably would be
all %#.#£, %0#.#£f, and %-#.#f formats. has (format *f *fc) would select all variables with
formats ending in £ or fc. not (format %t* %-t*) would select all variables except those with
date or time-series formats.

has(char) selects all variables with defined characteristics. has(char problem) selects all
variables with a characteristic named problem.
The following options are available with ds but are not shown in the dialog box:

insensitive specifies that the matching of the pattern in has() and not() be case insensitive.
Note that the case insensitivity applies only to ASCII characters.

indent (#) specifies the amount the lines are indented.

Remarks and examples

If ds is typed without any operands, then a compact list of the variable names for the data currently
in memory is displayed.

> Example 1

ds can be especially useful if you have a dataset with over 1,000 variables, but you may find it
convenient even if you have considerably fewer variables.

. use http://www.stata-press.com/data/r14/educ3
(ccdb46, 52-54)

. ds

fips popcol medhhinc tlf emp clfbls z

crimes perhspls medfinc clf empmanuf clfuebls adjinc
pcrimes perclpls state clffem emptrade famnw perman
crimrate prcolhs division clfue empserv fam2w pertrade
pop25pls medage region empgovt osigind famwsamp perserv
pophspls perwhite dc empself osigindp popl8pls perother

178 ds — List variables matching name patterns or other characteristics

> Example 2
You might wonder why you would ever specify a varlist with this command. Remember that a
varlist understands the ‘*’ abbreviation character and the ‘-’ dash notation; see [U] 11.4 varlists.
. ds p*

pcrimes pophspls perhspls prcolhs popl8pls pertrade perother
pop25pls popcol perclpls perwhite perman perserv

. ds popcol-clfue

popcol perclpls medage medhhinc state region t1lf clffem
perhspls prcolhs perwhite medfinc division dc clf clfue
4
> Example 3

Because the primary use of ds is to inspect the names of variables, it is sometimes useful to let
ds display the variable names in alphabetical order.

. ds, alpha

adjinc crimes empmanuf famwsamp osigindp perserv pophspls
clf crimrate empself fips pcrimes pertrade prcolhs
clfbls dc empserv medage perclpls perwhite region
clffem division emptrade medfinc perhspls popl8pls state
clfue emp fam2w medhhinc perman pop25pls tlf
clfuebls empgovt famnw osigind perother popcol z

Stored results

ds stores the following in r():

Macros
r(varlist) the varlist of found variables
Acknowledgments

ds was originally written by StataCorp. It was redesigned and rewritten by Nicholas J. Cox of the
Department of Geography at Durham University, UK, and coeditor of the Stata Journal and author of
Speaking Stata Graphics. The purpose was to include the selection options not, has(), and not();
to produce better-formatted output; and to be faster. Cox thanks Richard Goldstein, William Gould,
Kenneth Higbee, Jay Kaufman, Jean Marie Linhart, and Fred Wolfe for their helpful suggestions on
previous versions.

References

Cox, N. J. 2000. dm78: Describing variables in memory. Stata Technical Bulletin 56: 2—4. Reprinted in Stata Technical
Bulletin Reprints, vol. 10, pp. 15-17. College Station, TX: Stata Press.

——. 2001. dm78.1: Describing variables in memory: Update to Stata 7. Stata Technical Bulletin 60: 3. Reprinted
in Stata Technical Bulletin Reprints, vol. 10, p. 17. College Station, TX: Stata Press.

——. 2010a. Speaking Stata: Finding variables. Stata Journal 10: 281-296.
——. 2010b. Software Updates: Finding variables. Stata Journal 10: 691-692.
——. 2012. Software Updates: Finding variables. Stata Journal 12: 167.
Weiss, M. 2008. Stata tip 66: ds—A hidden gem. Stata Journal 8: 448-449.

http://www.stata-journal.com/
http://www.stata-press.com/books/speaking-stata-graphics/
http://www.stata.com/products/stb/journals/stb56.pdf
http://www.stata.com/products/stb/journals/stb60.pdf
http://www.stata-journal.com/sjpdf.html?articlenum=dm0048
http://www.stata-journal.com/sjpdf.html?articlenum=up0030
http://www.stata-journal.com/sjpdf.html?articlenum=up0035
http://www.stata-journal.com/sjpdf.html?articlenum=dm0040

ds — List variables matching name patterns or other characteristics 179

Also see
[D] ¢f — Compare two datasets
[D] codebook — Describe data contents
[D] compare — Compare two variables
[D] compress — Compress data in memory
[D] describe — Describe data in memory or in file
[D] format — Set variables’ output format
[D] label — Manipulate labels
[D] lookfor — Search for string in variable names and labels
[D] notes — Place notes in data
[D] order — Reorder variables in dataset

[D] rename — Rename variable

Title

duplicates — Report, tag, or drop duplicate observations

Description Quick start Menu Syntax Options
Remarks and examples Acknowledgments References Also see
Description

duplicates reports, displays, lists, tags, or drops duplicate observations, depending on the
subcommand specified. Duplicates are observations with identical values either on all variables if no
varlist is specified or on a specified varlist.

duplicates report produces a table showing observations that occur as one or more copies and
indicating how many observations are “surplus” in the sense that they are the second (third, . ..) copy
of the first of each group of duplicates.

duplicates examples lists one example for each group of duplicated observations. Each example
represents the first occurrence of each group in the dataset.

duplicates list lists all duplicated observations.

duplicates tag generates a variable representing the number of duplicates for each observation.
This will be O for all unique observations.

duplicates drop drops all but the first occurrence of each group of duplicated observations. The
word drop may not be abbreviated.

Any observations that do not satisfy specified if and/or in conditions are ignored when you use
report, examples, list, or drop. The variable created by tag will have missing values for such
observations.

Quick start

Report the total number of observations and the number of duplicates
duplicates report

As above, but only check for duplicates jointly by vi, v2, and v3
duplicates report vl v2 v3

Generate newv equal to the number of duplicate observations or 0 for unique observations
duplicates tag, generate(newv)

List all duplicate observations
duplicates list

As above, but determine duplicates by v1, v2, and v3 and separate list by values of v1
duplicates list vl v2 v3, sepby(vl)

Drop duplicate observations
duplicates drop

Force dropping observations with duplicates for v1, v2, and v3 if observations are unique by other
variables

duplicates drop vl v2 v3, force

180

duplicates — Report, tag, or drop duplicate observations 181

Menu
duplicates report, duplicates examples, and duplicates list

Data > Data utilities > Report and list duplicated observations
duplicates tag

Data > Data utilities > Tag duplicated observations
duplicates drop

Data > Data utilities > Drop duplicated observations

Syntax
Report duplicates

duplicates report [varlist] [zf] [in]

List one example for each group of duplicates

duplicates examples [varlist] [lf} [in] [, options}

List all duplicates

duplicates list [varlist] [lf] [zn} [, options]
Tag duplicates

duplicates tag [varlist] [zf] [m] » generate(newvar)
Drop duplicates

duplicates drop [l_'f] [m]

duplicates drop varlist [lf} [in] , force

182 duplicates — Report, tag, or drop duplicate observations

options Description
Main
compress compress width of columns in both table and display formats
nocompress use display format of each variable
fast synonym for nocompress; no delay in output of large datasets
abbreviate (#) abbreviate variable names to # characters; default is ab(8)
string(#) truncate string variables to # characters; default is string(10)
Options
table force table format
display force display format
header display variable header once; default is table mode
noheader suppress variable header
header (#) display variable header every # lines
clean force table format with no divider or separator lines
divider draw divider lines between columns
separator (#) draw a separator line every # lines; default is separator(5)
sepby (varlist) draw a separator line whenever varlist values change
nolabel display numeric codes rather than label values
Summary
mean[(varlist)] add line reporting the mean for each of the (specified) variables
sum[(varlisz)] add line reporting the sum for each of the (specified) variables
N[(varlist)} add line reporting the number of nonmissing values for each of the
(specified) variables
labvar (varname) substitute Mean, Sum, or N for value of varname in last row of table
Advanced

constant [(varlist)] separate and list variables that are constant only once

notrim suppress string trimming

absolute display overall observation numbers when using by varlist:
nodotz display numerical values equal to .z as field of blanks
subvarname substitute characteristic for variable name in header

linesize (#) columns per line; default is 1inesize (79)

Options

Options are presented under the following headings:

Options for duplicates examples and duplicates list
Option for duplicates tag
Option for duplicates drop

duplicates — Report, tag, or drop duplicate observations 183

Options for duplicates examples and duplicates list

Main

compress, nocompress, fast, abbreviate (#), string(#); see [D] list.

table, display, header, noheader, header (#), clean, divider, separator (#),
sepby (varlist), nolabel; see [D] list.

Summary

mean[(varlisl)], sum[(varlist)}, N[(varlist)], labvar (varname) ; see [D] list.

Advanced

constant [(varlist)], notrim, absolute, nodotz, subvarname, linesize (#); see [D] list.

Option for duplicates tag

generate(newvar) is required and specifies the name of a new variable that will tag duplicates.

Option for duplicates drop

force specifies that observations duplicated with respect to a named varlist be dropped. The force
option is required when such a varlist is given as a reminder that information may be lost by
dropping observations, given that those observations may differ on any variable not included in
varlist.

Remarks and examples

Current data management and analysis may hinge on detecting (and sometimes dropping) duplicate
observations. In Stata terms, duplicates are observations with identical values, either on all variables if
no varlist is specified or on a specified varlist; that is, 2 or more observations that are identical on all
specified variables form a group of duplicates. When the specified variables are a set of explanatory
variables, such a group is often called a covariate pattern or a covariate class.

Linguistic purists will point out that duplicate observations are strictly only those that occur in
pairs, and they might prefer a more literal term, although the most obvious replacement, “replicates”,
already has another statistical meaning. However, the looser term appears in practice to be much
more frequently used for this purpose and to be as easy to understand.

Observations may occur as duplicates through some error; for example, the same observations
might have been entered more than once into your dataset. In contrast, some researchers deliberately
enter a dataset twice. Each entry is a check on the other, and all observations should occur as identical
pairs, assuming that one or more variables identify unique records. If there is just one copy, or more
than two copies, there has been an error in data entry.

Or duplicate observations may also arise simply because some observations just happen to be
identical, which is especially likely with categorical variables or large datasets. In this second situation,
consider whether contract, which automatically produces a count of each distinct set of observations,
is more appropriate for your problem. See [D] contract.

184 duplicates — Report, tag, or drop duplicate observations

Observations unique on all variables in varlist occur as single copies. Thus there are no surplus
observations in the sense that no observation may be dropped without losing information about the
contents of observations. (Information will inevitably be lost on the frequency of such observations.
Again, if recording frequency is important to you, contract is the better command to use.)
Observations that are duplicated twice or more occur as copies, and in each case, all but one copy
may be considered surplus.

This command helps you produce a dataset, usually smaller than the original, in which each
observation is unique (literally, each occurs only once) and distinct (each differs from all the others).
If you are familiar with Unix systems, or with sets of Unix utilities ported to other platforms, you
will know the uniq command, which removes duplicate adjacent lines from a file, usually as part of

a pipe.

> Example 1

Suppose that we are given a dataset in which some observations are unique (no other observation
is identical on all variables) and other observations are duplicates (in each case, at least 1 other
observation exists that is identical). Imagine dropping all but 1 observation from each group of
duplicates, that is, dropping the surplus observations. Now all the observations are unique. This
example helps clarify the difference between 1) identifying unique observations before dropping
surplus copies and 2) identifying unique observations after dropping surplus copies (whether in truth
or merely in imagination). codebook (see [D] codebook) reports the number of unique values for
each variable in this second sense.

Suppose that we have typed in a dataset for 200 individuals. However, a simple describe or
count shows that we have 202 observations in our dataset. We guess that we may have typed in 2
observations twice. duplicates report gives a quick report of the occurrence of duplicates:

. use http://www.stata-press.com/data/r14/dupxmpl
. duplicates report

Duplicates in terms of all variables

copies observations surplus
1 198 0
2 4 2

Our hypothesis is supported: 198 observations are unique (just 1 copy of each), whereas 4 occur
as duplicates (2 copies of each; in each case, 1 may be dubbed surplus). We now wish to see which
observations are duplicates, so the next step is to ask for a duplicates list.

. duplicates list

Duplicates in terms of all variables

group: obs: id x y

1 42 42
1 43 42
2 145 144
2 146 144

NN
BN

duplicates — Report, tag, or drop duplicate observations 185

The records for id 42 and id 144 were evidently entered twice. Satisfied, we now issue duplicates
drop.

. duplicates drop

Duplicates in terms of all variables

(2 observations deleted)

d

The report, 1list, and drop subcommands of duplicates are perhaps the most useful, especially
for a relatively small dataset. For a larger dataset with many duplicates, a full listing may be too long
to be manageable, especially as you see repetitions of the same data. duplicates examples gives
you a more compact listing in which each group of duplicates is represented by just 1 observation,
the first to occur.

A subcommand that is occasionally useful is duplicates tag, which generates a new variable
containing the number of duplicates for each observation. Thus unique observations are tagged with
value 0, and all duplicate observations are tagged with values greater than 0. For checking double
data entry, in which you expect just one surplus copy for each individual record, you can generate a
tag variable and then look at observations with tag not equal to 1 because both unique observations
and groups with two or more surplus copies need inspection.

. duplicates tag, gen(tag)

Duplicates in terms of all variables

As of Stata 11, the browse subcommand is no longer available. To open duplicates in the Data
Browser, use the following commands:
. duplicates tag, generate(newvar)

. browse if newvar > 0

See [D] edit for details on the browse command.

Acknowledgments

duplicates was written by Nicholas J. Cox of the Department of Geography at Durham University,
UK, and coeditor of the Stata Journal and author of Speaking Stata Graphics. He in turn thanks Thomas
Steichen of RIRT for ideas contributed to an earlier jointly written program (Steichen and Cox 1998).

References

Jacobs, M. 1991. dm4: A duplicated value identification program. Stata Technical Bulletin 4: 5. Reprinted in Stata
Technical Bulletin Reprints, vol. 1, p. 30. College Station, TX: Stata Press.

Steichen, T. J., and N. J. Cox. 1998. dm53: Detection and deletion of duplicate observations. Stata Technical Bulletin
41: 2-4. Reprinted in Stata Technical Bulletin Reprints, vol. 7, pp. 52-55. College Station, TX: Stata Press.

Wang, D. 2000. dm77: Removing duplicate observations in a dataset. Stata Technical Bulletin 54: 16-17. Reprinted
in Stata Technical Bulletin Reprints, vol. 9, pp. 87-88. College Station, TX: Stata Press.

http://www.stata-journal.com/
http://www.stata-press.com/books/speaking-stata-graphics/
http://www.stata.com/products/stb/journals/stb4.pdf
http://www.stata.com/products/stb/journals/stb41.pdf
http://www.stata.com/products/stb/journals/stb54.pdf

186 duplicates — Report, tag, or drop duplicate observations

Also see
[D] codebook — Describe data contents
[D] contract — Make dataset of frequencies and percentages
[D] edit — Browse or edit data with Data Editor
[D] isid — Check for unique identifiers

[D] list — List values of variables

Title

edit — Browse or edit data with Data Editor

Description Quick start Menu Syntax
Option Remarks and examples References Also see

Description

edit brings up a spreadsheet-style data editor for entering new data and editing existing data.
edit is a better alternative to input; see [D] input.

browse is similar to edit, except that modifications to the data by editing in the grid are not
permitted. browse is a convenient alternative to 1ist; see [D] list.

See [GS] 6 Using the Data Editor (GSM, GSU, or GSW) for a tutorial discussion of the Data Editor.
This entry provides the technical details.

Quick start

Open dataset in the Data Editor for entering new data or editing existing data
edit

As above, but include only v1, v2, and v3
edit v1 v2 v3

As above, but only for observations where v3 is missing
edit vl v2 v3 if v3 >= .

Open dataset in the Data Editor with no ability to edit data
browse

As above, but include only v1, v2, and v3 and suppress value labels
browse vl v2 v3, nolabel

Menu
edit
Data > Data Editor > Data Editor (Edit)

browse
Data > Data Editor > Data Editor (Browse)

187

188 edit — Browse or edit data with Data Editor

Syntax
Edit using Data Editor

edit [varlist] [zf] [zn] [, @abel}

Browse using Data Editor

browse [vurlist] [lf] [m] [, @abel]

Option

nolabel causes the underlying numeric values, rather than the label values (equivalent strings), to
be displayed for variables with value labels; see [D] label.

Remarks and examples

Remarks are presented under the following headings:

Modes

The current observation and current variable
Assigning value labels to variables
Changing values of existing cells

Adding new variables

Adding new observations

Copying and pasting

Logging changes

Advice

Clicking on Stata’s Data Editor (Edit) button is equivalent to typing edit by itself. Clicking on
Stata’s Data Editor (Browse) button is equivalent to typing browse by itself.

edit, typed by itself, opens the Data Editor with all observations on all variables displayed. If
you specify a varlist, only the specified variables are displayed in the Editor. If you specify one or
both of in range and if exp, only the observations specified are displayed.

Modes

We will refer to the Data Editor in the singular with edit and browse referring to two of its
three modes.

Full-edit mode. This is the Editor’s mode that you enter when you type edit or type edit followed
by a list of variables. All features of the Editor are turned on.

Filtered mode. This is the Editor’s mode that you enter when you use edit with or without a list of
variables but include in range, if exp, or both, or if you filter the data from within the Editor.
A few of the Editor’s features are turned off, most notably, the ability to sort data and the ability
to paste data into the Editor.

Browse mode. This is the Editor’s mode that you enter when you use browse or when you change
the Editor’s mode to Browse after you start the Editor. The ability to type in the Editor, thereby
changing data, is turned off, ensuring that the data cannot accidentally be changed. One feature
that is left on may surprise you: the ability to sort data. Sorting, in Stata’s mind, is not really a
change to the dataset. On the other hand, if you enter using browse and specify in range or if
exp, sorting is not allowed. You can think of this as restricted-browse mode.

edit — Browse or edit data with Data Editor 189

Actually, the Editor does not set its mode to filtered just because you specify an in range or if
exp. It sets its mode to filtered if you specify in or if and if this restriction is effective, that is, if
the in or if would actually cause some data to be omitted. For instance, typing edit if x>0 would
result in unrestricted full-edit mode if x were greater than zero for all observations.

The current observation and current variable

The Data Editor looks much like a spreadsheet, with rows and columns corresponding to observations
and variables, respectively. At all times, one of the cells is highlighted. This is called the current cell.
The observation (row) of the current cell is called the current observation. The variable (column) of
the current cell is called the current variable.

You change the current cell by clicking with the mouse on another cell or by using the arrow keys.

To help distinguish between the different types of variables in the Editor, string values are displayed
in red, value labels are displayed in blue, and all other values are displayed in black. You can change
the colors for strings and value labels by right-clicking on the Data Editor window and selecting
Preferences....

Assigning value labels to variables

You can assign a value label to a nonstring variable by right-clicking any cell on the variable
column, choosing the Data > Value Labels menu, and selecting a value label from the Attach Value
Label to Variable ‘varname’ menu. You can define a value label by right-clicking on the Data Editor
window and selecting Data > Value Labels > Manage Value Labels.... You can also accomplish
these tasks by using the Properties pane; see [GS] 6 Using the Data Editor (GSM, GSU, or GSW) for
details.

Changing values of existing cells

Make the cell you wish to change the current cell. Type the new value, and press Enter. When
updating string variables, do not type double quotes around the string. For variables that have a value
label, you can right-click on the cell to display a list of values for the value label. You can assign a
new value to the cell by selecting a value from the list.

Q Technical note

Stata experts will wonder about storage types. Say that variable mpg is stored as an int and you
want to change the fourth observation to contain 22.5. The Data Editor will change the storage type
of the variable. Similarly, if the variable is a str4 and you type alpha, it will be changed to str5.

The Editor will not, however, change numeric variable types to strings (unless the numeric variable
contains only missing values). This is intentional, as such a change could result in a loss of data and
is probably the result of a mistake.

a

Q Technical note

Stata can store long strings in the strL storage type. Although the strL type can hold very long
strings, these strings may only be edited if they are 2045 characters or less. Similarly, strLs that
hold binary data may not be edited. For more information on storage types, see [D] data types.

a

190 edit — Browse or edit data with Data Editor

Adding new variables

Go to the first empty column, and begin entering your data. The first entry that you make will
create the variable and determine whether that variable is numeric or string. The variable will be
given a name like var1, but you can rename it by using the Properties pane.

Q Technical note

Stata experts: The storage type will be determined automatically. If you type a number, the created
variable will be numeric; if you type a string, it will be a string. Thus if you want a string variable,
be sure that your first entry cannot be interpreted as a number. A way to achieve this is to use
surrounding quotes so that "123" will be taken as the string "123", not the number 123. If you
want a numeric variable, do not worry about whether it is byte, int, float, etc. If a byte will
hold your first number but you need a £loat to hold your second number, the Editor will recast the
variable later.

a

Q Technical note

If you do not type in the first empty column but instead type in one to the right of it, the Editor
will create variables for all the intervening columns.
a

Adding new observations

Go to the first empty row, and begin entering your data. As soon as you add one cell below the
last row of the dataset, an observation will be created.

Q Technical note

If you do not enter data in the first empty row but, instead, enter data in a row below it, the Data
Editor will create observations for all the intervening rows.
Q

Copying and pasting
You can copy and paste data between Stata’s Data Editor and other applications.

First, select the data you wish to copy. In Stata, click on a cell and drag the mouse across other
cells to select a range of cells. If you want to select an entire column, click once on the variable
name at the top of that column. If you want to select an entire row, click once on the observation
number at the left of that row. You can hold down the mouse button after clicking and drag to select
multiple columns or rows.

Once you have selected the data, copy the data to the Clipboard. In Stata, right-click on the
selected data, and select Copy.

You can copy data to the Clipboard from Stata with or without the variable names at the top of
each column by right-clicking on the Data Editor window, selecting Preferences..., and checking or
unchecking Include variable names on copy to Clipboard.

edit — Browse or edit data with Data Editor 191

You can choose to copy either the value labels or the underlying numeric values associated with
the selected data by right-clicking on the Data Editor window, selecting Preferences..., and checking
or unchecking Copy value labels instead of numbers. For more information about value labels, see
[U] 12.6.3 Value labels and [D] label.

After you have copied data to the Clipboard from Stata’s Data Editor or another spreadsheet, you
can paste the data into Stata’s Data Editor. First, select the top-left cell of the area into which you
wish to paste the data by clicking on it once. Then right-click on the cell and select Paste. Stata
will paste the data from the Clipboard into the Editor, overwriting any data below and to the right
of the cell you selected as the top left of the paste area. If the Data Editor is in filtered mode or in
browse mode, Paste will be disabled, meaning that you cannot paste into the Data Editor. You can
have more control over how data is pasted by selecting Paste Special....

Q Technical note

If you attempt to paste one or more string values into numeric variables, the original numeric
values will be left unchanged for those cells. Stata will display a message box to let you know that
this has happened: “You attempted to paste one or more string values into numeric variables. The
contents of these cells, if any, are unchanged.”

If you see this message, you should look carefully at the data that you pasted into Stata’s Data
Editor to make sure that you pasted into the area that you intended. We recommend that you take a
snapshot of your data before pasting into Stata’s Data Editor so that you can restore the data from
the snapshot if you make a mistake. See [GS] 6 Using the Data Editor (GSM, GSU, or GSW) to read
about snapshots.

a

Logging changes

When you use edit to enter new data or change existing data, you will find output in the Stata
Results window documenting the changes that you made. For example, a line of this output might be

. replace mpg = 22.5 in 5

The Editor submits a command to Stata for everything you do in it except pasting. If you are logging
your results, you will have a permanent record of what you did in the Editor.

Advice

e People who care about data integrity know that editors are dangerous—it is too easy to make
changes accidentally. Never use edit when you want to browse.

e Protect yourself when you edit existing data by limiting exposure. If you need to change mpg and
need to see model to know which value of mpg to change, do not click on the Data Editor button.
Instead, type edit model mpg. It is now impossible for you to change (damage) variables other
than model and mpg. Furthermore, if you know that you need to change mpg only if it is missing,
you can reduce your exposure even more by typing ‘edit model mpg if mpg>=.’.

e Stata’s Data Editor is safer than most because it logs changes to the Results window. Use this
feature—Ilook at the log afterward, and verify that the changes you made are the changes you
wanted to make.

192 edit — Browse or edit data with Data Editor

References

Brady, T. 1998. dm63: Dialog box window for browsing, editing, and entering observations. Stata Technical Bulletin
46: 2-6. Reprinted in Stata Technical Bulletin Reprints, vol. 8, pp. 28-34. College Station, TX: Stata Press.

——. 2000. dm63.1: A new version of winshow for Stata 6. Stata Technical Bulletin 53: 3-5. Reprinted in Stata
Technical Bulletin Reprints, vol. 9, pp. 15-19. College Station, TX: Stata Press.

Also see
[D] import — Overview of importing data into Stata
[D] input — Enter data from keyboard
[D] list — List values of variables
[D] save — Save Stata dataset
[GSM] 6 Using the Data Editor
[GSW] 6 Using the Data Editor
[GSU] 6 Using the Data Editor

http://www.stata.com/products/stb/journals/stb46.pdf
http://www.stata.com/products/stb/journals/stb53.pdf

Title

egen — Extensions to generate

Description Quick start Menu Syntax
Remarks and examples Methods and formulas Acknowledgments References
Also see

Description

egen creates newvar of the optionally specified storage type equal to fcn (arguments). Here fen ()
is a function specifically written for egen, as documented below or as written by users. Only egen
functions may be used with egen, and conversely, only egen may be used to run egen functions.

Depending on fcn (), arguments, if present, refers to an expression, varlist, or a numlist, and the
options are similarly fcn dependent. Explicit subscripting (using _N and _n), which is commonly
used with generate, should not be used with egen; see [U] 13.7 Explicit subscripting.

Quick start

Generate newv1 for distinct groups of vl and v2 and create and apply value label mylabel
egen newvl = group(vl v2), label lname(mylabel)

Generate newv2 equal to the minimum of v1, v2, and v3 for each observation
egen newv2 = rowmin(vl v2 v3)

Generate newv3 equal to the overall sum of v1
egen newv3 = total(vl)

As above, but calculate total within each level of catvar
egen newv3 = total(vl), by(catvar)

Generate newv4 equal to the number of nonmissing numeric values across v1, v2, and v3 for each
observation

egen newv4 = rownonmiss(vl v2 v3)

As above, but allow string values

egen newv4 = rownonmiss(vl v2 v3), strok

Generate newv5 as the concatenation of numeric v1 and string v4 separated by a space
egen newvb = concat(vl v4), punct(" ")

Menu

Data > Create or change data > Create new variable (extended)

193

194 egen — Extensions to generate

Syntax
egen [type} newvar = fen(arguments) [zf] [in] [, options]
by is allowed with some of the egen functions, as noted below.

where depending on the fcn, arguments refers to an expression, varlist, or numlist, and the options
are also fcn dependent, and where fcn is

anycount (varlist) , values (integer numlist)
may not be combined with by. It returns the number of variables in varlist for which values are
equal to any integer value in a supplied numlist. Values for any observations excluded by either
if or in are set to 0 (not missing). Also see anyvalue (varname) and anymatch (varlist).

anymatch (varlist) , values (integer numlist)
may not be combined with by. It is 1 if any variable in varlist is equal to any integer value in
a supplied numlist and O otherwise. Values for any observations excluded by either if or in
are set to 0 (not missing). Also see anyvalue (varname) and anycount (varlist).

anyvalue (varname) , values (integer numlist)
may not be combined with by. It takes the value of varname if varname is equal to any
integer value in a supplied numlist and is missing otherwise. Also see anymatch (varlist) and
anycount (varlist) .

concat (varlist) [, format (% fmt) decode maxlength(#) punct (pchars)]
may not be combined with by. It concatenates varlist to produce a string variable. Values of
string variables are unchanged. Values of numeric variables are converted to string, as is, or
are converted using a numeric format under the format (%fmt) option or decoded under the
decode option, in which case maxlength() may also be used to control the maximum label
length used. By default, variables are added end to end: punct (pchars) may be used to specify
punctuation, such as a space, punct (" "), or a comma, punct(,).

count (exp) (allows by varlist:)
creates a constant (within varlist) containing the number of nonmissing observations of exp.
Also see rownonmiss () and rowmiss().

cut (varname) , { at (#,#,...,#) \5roup(#) } [ijodes @el]
may not be combined with by. It creates a new categorical variable coded with the left-hand
ends of the grouping intervals specified in the at () option, which expects an ascending numlist.

at (#,#,...,#) supplies the breaks for the groups, in ascending order. The list of breakpoints
may be simply a list of numbers separated by commas but can also include the syntax a(b)c,
meaning from a to c in steps of size b. If no breaks are specified, the command expects the
group () option.

group (#) specifies the number of equal frequency grouping intervals to be used in the absence
of breaks. Specifying this option automatically invokes icodes.

icodes requests that the codes 0, 1, 2, etc., be used in place of the left-hand ends of the
intervals.

label requests that the integer-coded values of the grouped variable be labeled with the
left-hand ends of the grouping intervals. Specifying this option automatically invokes icodes.

diff (varlist)
may not be combined with by. It creates an indicator variable equal to 1 if the variables in
varlist are not equal and 0 otherwise.

egen — Extensions to generate 195

ends (strvar) [, punct (pchars) trim [lgead |last \;ail]]
may not be combined with by. It gives the first “word” or head (with the head option), the
last “word” (with the last option), or the remainder or tail (with the tail option) from string
variable strvar.

head, last, and tail are determined by the occurrence of pchars, which is by default one
space (“ 7).

The head is whatever precedes the first occurrence of pchars, or the whole of the string if it
does not occur. For example, the head of “frog toad” is “frog” and that of “frog” is “frog”.
With punct(,), the head of “frog,toad” is “frog”.

The last word is whatever follows the last occurrence of pchars or is the whole of the string
if a space does not occur. The last word of “frog toad newt” is “newt” and that of “frog” is
“frog”. With punct(,), the last word of “frog,toad” is “toad”.

The remainder or tail is whatever follows the first occurrence of pchars, which will be the
empty string "" if pchars does not occur. The tail of “frog toad newt” is “toad newt” and that
of “frog” is "". With punct(,), the tail of “frog,toad” is “toad”.

The trim option trims any leading or trailing spaces.

£i11 (numlist)
may not be combined with by. It creates a variable of ascending or descending numbers or
complex repeating patterns. numlist must contain at least two numbers and may be specified
using standard numlist notation; see [U] 11.1.8 numlist. if and in are not allowed with £i11().

group (varlist) [, missing label lname (name) truncate (num) }

may not be combined with by. It creates one variable taking on values 1, 2, ... for the groups
formed by varlist. varlist may contain numeric variables, string variables, or a combination of
the two. The order of the groups is that of the sort order of varlist. missing indicates that
missing values in varlist (either . or "") are to be treated like any other value when assigning
groups, instead of as missing values being assigned to the group missing. The label option
returns integers from 1 up according to the distinct groups of varlist in sorted order. The integers
are labeled with the values of varlist or the value labels, if they exist. lname () specifies the
name to be given to the value label created to hold the labels; 1name () implies label. The
truncate () option truncates the values contributed to the label from each variable in varlist
to the length specified by the integer argument num. The truncate option cannot be used
without specifying the label option. The truncate option does not change the groups that
are formed; it changes only their labels.

iqr (exp) (allows by varlist:)
creates a constant (within varlist) containing the interquartile range of exp. Also see pctile ().

kurt (varname) (allows by varlist:)
returns the kurtosis (within varlist) of varname.

mad (exp) (allows by varlist:)
returns the median absolute deviation from the median (within varlist) of exp.

max (exp) (allows by varlist:)
creates a constant (within varlist) containing the maximum value of exp.

mdev (exp) (allows by varlist:)
returns the mean absolute deviation from the mean (within varlist) of exp.

mean (exp) (allows by varlist:)
creates a constant (within varlist) containing the mean of exp.

196 egen — Extensions to generate

median (exp) (allows by varlist:)
creates a constant (within varlist) containing the median of exp. Also see pctile().

min (exp) (allows by varlist:)
creates a constant (within varlist) containing the minimum value of exp.

mode (varname) [, minmode maxmode nummode (integer) miﬁing] (allows by varlist:)
produces the mode (within varlist) for varname, which may be numeric or string. The mode
is the value occurring most frequently. If two or more modes exist or if varname contains
all missing values, the mode produced will be a missing value. To avoid this, the minmode,
maxmode, or nummode () option may be used to specify choices for selecting among the multiple
modes, and the missing option will treat missing values as categories. minmode returns the
lowest value, and maxmode returns the highest value. nummode (#) will return the #th mode,
counting from the lowest up. Missing values are excluded from determination of the mode
unless missing is specified. Even so, the value of the mode is recorded for observations for
which the values of varname are missing unless they are explicitly excluded, that is, by if
varname < . or if varname '= "".

mtr (year income)
may not be combined with by. It returns the U.S. marginal income tax rate for a married couple
with taxable income income in year year, where 1930 < year < 2014. year and income may
be specified as variable names or constants; for example, mtr (1993 faminc), mtr (surveyyr
28000), or mtr (surveyyr faminc). A blank or comma may be used to separate income from
year.

pe(exp) [R prop] (allows by varlist:)
returns exp (within varlist) scaled to be a percentage of the total, between 0 and 100. The prop
option returns exp scaled to be a proportion of the total, between O and 1.

pctile(exp) [, p(#] (allows by varlist:)
creates a constant (within varlist) containing the #th percentile of exp. If p(#) is not specified,
50 is assumed, meaning medians. Also see median().

rank (exp) [, field|track| gnique] (allows by varlist:)
creates ranks (within varlist) of exp; by default, equal observations are assigned the average
rank. The field option calculates the field rank of exp: the highest value is ranked 1, and there
is no correction for ties. That is, the field rank is 1 4 the number of values that are higher.
The track option calculates the track rank of exp: the lowest value is ranked 1, and there is
no correction for ties. That is, the track rank is 1 + the number of values that are lower. The
unique option calculates the unique rank of exp: values are ranked 1, ..., #, and values and
ties are broken arbitrarily. Two values that are tied for second are ranked 2 and 3.

rowfirst (varlist)
may not be combined with by. It gives the first nonmissing value in varlist for each observation
(row). If all values in varlist are missing for an observation, newvar is set to missing.

rowlast (varlist)
may not be combined with by. It gives the last nonmissing value in varlist for each observation
(row). If all values in varlist are missing for an observation, newvar is set to missing.

rowmax (varlist)
may not be combined with by. It gives the maximum value (ignoring missing values) in varlist
for each observation (row). If all values in varlist are missing for an observation, newvar is set
to missing.

egen — Extensions to generate 197

rowmean (varlist)
may not be combined with by. It creates the (row) means of the variables in varlist, ignoring
missing values; for example, if three variables are specified and, in some observations, one of
the variables is missing, in those observations newvar will contain the mean of the two variables
that do exist. Other observations will contain the mean of all three variables. Where none of
the variables exist, newvar is set to missing.

rowmedian (varlist)
may not be combined with by. It gives the (row) median of the variables in varlist, ignoring
missing values. If all variables in varlist are missing for an observation, newvar is set to missing
in that observation. Also see rowpctile().

rowmin (varlist)
may not be combined with by. It gives the minimum value in varlist for each observation (row).
If all values in varlist are missing for an observation, newvar is set to missing.

rowmiss (varlist)
may not be combined with by. It gives the number of missing values in varlist for each
observation (row).

rownonmiss (varlist) [s §trok]
may not be combined with by. It gives the number of nonmissing values in varlist for each
observation (row)—this is the value used by rowmean() for the denominator in the mean
calculation.

String variables may not be specified unless the strok option is also specified. If strok is
specified, string variables will be counted as containing missing values when they contain "".
Numeric variables will be counted as containing missing when their value is “> .”.

rowpctile (varlist) [, p(#]
may not be combined with by. It gives the #th percentile of the variables in varlist, ignoring
missing values. If all variables in varlist are missing for an observation, newvar is set to missing
in that observation. If p() is not specified, p(50) is assumed, meaning medians. Also see
rowmedian().

rowsd (varlist)
may not be combined with by. It creates the (row) standard deviations of the variables in varlist,
ignoring missing values.

rowtotal (varlist) [, gissing]
may not be combined with by. It creates the (row) sum of the variables in varlist, treating missing
values as 0. If missing is specified and all values in varlist are missing for an observation,
newvar is set to missing.

sd (exp) (allows by varlist:)
creates a constant (within varlist) containing the standard deviation of exp. Also see mean ().
seqQ) [, from(#) to(#) block(#)] (allows by varlist:)

returns integer sequences. Values start from from() (default 1) and increase to to() (the
default is the maximum number of values) in blocks (default size 1). If to() is less than
the maximum number, sequences restart at from(). Numbering may also be separate within
groups defined by varlist or decreasing if to() is less than from(). Sequences depend on the
sort order of observations, following three rules: 1) observations excluded by if or in are not
counted; 2) observations are sorted by varlist, if specified; and 3) otherwise, the order is that
when called. No arguments are specified.

skew (varname) (allows by varlist:)
returns the skewness (within varlist) of varname.

198 egen — Extensions to generate

std(exp) [, mean(#) std(#)]
may not be combined with by. It creates the standardized values of exp. The options specify
the desired mean and standard deviation. The default is mean(0) and std(1), producing a
variable with mean O and standard deviation 1.

tag (varlist) [, gissing]

may not be combined with by. It tags just 1 observation in each distinct group defined by
varlist. When all observations in a group have the same value for a summary variable calculated
for the group, it will be sufficient to use just one value for many purposes. The result will be
1 if the observation is tagged and never missing, and O otherwise. Values for any observations
excluded by either if or in are set to 0 (not missing). Hence, if tag is the variable produced
by egen tag = tag(varlist), the idiom if tag is always safe. missing specifies that missing
values of varlist may be included.

total (exp) [s @issing] (allows by varlist:)
creates a constant (within varlist) containing the sum of exp treating missing as 0. If missing
is specified and all values in exp are missing, newvar is set to missing. Also see mean().

Remarks and examples

Remarks are presented under the following headings:

Summary statistics

Generating patterns

Marking differences among variables
Ranks

Standardized variables

Row functions

Categorical and integer variables
String variables

U.S. marginal income tax rate

See Mitchell (2010) for numerous examples using egen.

Summary statistics

The functions count (), iqr(), kurt(), mad(), max(), mdev(), mean(), median(), min(),
mode (), pc(), pctile(), sd(), skew(), and total () create variables containing summary statistics.
These functions take a by ... : prefix and, if specified, calculate the summary statistics within each

by-group.

> Example 1: Without the by prefix

Without the by prefix, the result produced by these functions is a constant for every observation
in the data. For instance, we have data on cholesterol levels (chol) and wish to have a variable that,
for each patient, records the deviation from the average across all patients:

. use http://www.stata-press.com/data/r14/egenxmpl
. egen avg = mean(chol)

. generate deviation = chol - avg 4

egen — Extensions to generate 199

> Example 2: With the by prefix

These functions are most useful when the by prefix is specified. For instance, assume that our
dataset includes dcode, a hospital—patient diagnostic code, and los, the number of days that the
patient remained in the hospital. We wish to obtain the deviation in length of stay from the median
for all patients having the same diagnostic code:

. use http://www.stata-press.com/data/r14/egenxmpl2, clear
. by dcode, sort: egen medstay = median(los)

. generate deltalos = los - medstay 4

Q Technical note

Distinguish carefully between Stata’s sum() function and egen’s total () function. Stata’s sum()
function creates the running sum, whereas egen’s total () function creates a constant equal to the
overall sum; for example,

. clear

. set obs 5
number of observations (_N) was O, now 5

. generate a = _n

. generate suml=sum(a)
. egen sum2=total(a)

. list

1. 1 1 15
2. 2 3 15
3. 3 6 15
4. 4 10 15
5. 5 15 15

Q Technical note

The definitions and formulas used by these functions are the same as those used by summarize;
see [R] summarize. For comparison with summarize, mean() and sd() correspond to the mean and
standard deviation. total () is the numerator of the mean, and count () is its denominator. min ()
and max () correspond to the minimum and maximum. median () —or, equally well, pctile() with
p(50) —is the median. pctile() with p(5) refers to the fifth percentile, and so on. iqr() is the

difference between the 75th and 25th percentiles. a

The mode is the most common value of a dataset, whether it contains numeric or string variables.
It is perhaps most useful for categorical variables (whether defined by integers or strings) or for other
integer-valued values, but mode () can be applied to variables of any type. Nevertheless, the modes
of continuous (or nearly continuous) variables are perhaps better estimated either from inspection of
a graph of a frequency distribution or from the results of some density estimation (see [R] kdensity).

Missing values need special attention. It is possible that missing is the most common value in a
variable (whether missing is defined by the period [.] or extended missing values [.a, .b, ..., .2z]
for numeric variables or the empty string [""] for string variables). However, missing values are by
default excluded from determination of modes. If you wish to include them, use the missing option.

200 egen — Extensions to generate

In contrast, egen mode = mode (varname) allows the generation of nonmissing modes for obser-
vations for which varname is missing. This allows use of the mode as one simple means of imputing
categorical variables. If you want the mode to be missing whenever varname is missing, you can
specify if varname < . or if varname != "" or, most generally, if !'missing(varname).

mad () and mdev () produce alternative measures of spread. The median absolute deviation from the
median and even the mean deviation will both be more resistant than the standard deviation to heavy
tails or outliers, in particular from distributions with heavier tails than the normal or Gaussian. The
first measure was named the MAD by Andrews et al. (1972) but was already known to K. F. Gauss in
1816, according to Hampel et al. (1986). For more historical and statistical details, see David (1998)
and Wilcox (2003, 72-73).

Generating patterns

To create a sequence of numbers, simply “show” the £i11() function how the sequence should
look. It must be a linear progression to produce the expected results. Stata does not understand
geometric progressions. To produce repeating patterns, you present £i11() with the pattern twice in
the numlist.

> Example 3: Sequences produced by fill()

Here are some examples of ascending and descending sequences produced by £i11():

. clear

. set obs 12
number of observations (_N) was O, now 12

. egen i=fill(1 2)

. egen w=£il1(100 99)

. egen x=fill(22 17)

. egen y=fill(1 1 2 2)

. egen z=fill(8 8 8 7 7 7)
. list, sep(4)

i W X y z
1 1 100 22 1 8
2 2 99 17 1 8
3 3 98 12 2 8
4 4 97 T o2 7
5. 5 96 2 3 7
6. 6 95 -3 3 7
7. 7 94 -8 4 6
8. 8 93 -13 4 6
9. 9 92 -18 5 6

10. 10 91 -23 5 b

11. 11 90 -28 6 5

12. 12 89 -33 6 5

egen — Extensions to generate 201

> Example 4: Patterns produced by fill()

Here are examples of patterns produced by £i11():

. clear

. set obs 12
number of observations (_N) was O, now 12

. egen a=fill(0 0 1 0 0 1)

. egen b=fill(1 3 8 1 3 8)

. egen c=fill(-3(3)6 -3(3)6)

. egen d=fill(10 20 to 50 10 20 to 50)
. list, sep(4)

a b c d
1. 0 1 -3 10
2. 0 3 0 20
3. 1 8 3 30
4. 0 1 6 40
5. 0 3 -3 50
6. 1 8 0 10
T. 0 1 3 20
8. 0 3 6 30
9. 1 8 -3 40
10 0 1 0 50
11. 0 3 3 10
12. 1 8 6 20

> Example 5: seq()

seq() creates a new variable containing one or more sequences of integers. It is useful mainly
for quickly creating observation identifiers or automatically numbering levels of factors or categorical
variables.

. clear
. set obs 12
In the simplest case,
. egen a = seq()
is just equivalent to the common idiom

. generate a = _n

a may also be obtained from

. range a 1 _N

(the actual value of _N may also be used).

In more complicated cases, seq() with option calls is equivalent to calls to the versatile functions
int and mod.

. egen b = seq(), b(2)

202 egen — Extensions to generate

produces integers in blocks of 2, whereas
. egen c = seq(), t(6)
restarts the sequence after 6 is reached.
. egen d = seq(), £(10) t(12)
shows that sequences may start with integers other than 1, and

. egen e = seq(), £(3) t(1)

shows that they may decrease.
The results of these commands are shown by

. list, sep(4)

a b c d e
1. 1 1 1 10 3
2. 2 1 2 11 2
3. 3 2 3 12 1
4. 4 2 4 10 3
5 5 3 5 11 2
6 6 3 6 12 1
7 7T 4 1 10 3
8 8 4 2 11 2
9 9 5 3 12 1
10. 10 5 4 10 3
11. 11 6 5 11 2
12. 12 6 6 12 1

All of these sequences could have been generated in one line with generate and with the use of
the int and mod functions. The variables b through e are obtained with

. genb =1+ int((_n - 1)/2)
.genc=1+mod(_n - 1, 6)
. gend =10 + mod(_n - 1, 3)
. gene =3 -mod(_n - 1, 3)

Nevertheless, seq() may save users from puzzling out such solutions or from typing in the needed
values.

In general, the sequences produced depend on the sort order of observations, following three rules:
1. observations excluded by if or in are not counted,;
2. observations are sorted by varlist, if specified; and

3. otherwise, the order is that specified when seq() is called.

4

The £i11 () and seq() functions are alternatives. In essence, £i11() requires a minimal example
that indicates the kind of sequence required, whereas seq() requires that the rule be specified through
options. There are sequences that £i11() can produce that seq() cannot, and vice versa. £i11()
cannot be combined with if or in, in contrast to seq(), which can.

egen — Extensions to generate 203

Marking differences among variables

> Example 6: diff()

We have three measures of respondents’ income obtained from different sources. We wish to create
the variable differ equal to 1 for disagreements:

. use http://www.stata-press.com/data/r14/egenxmpl3, clear
. egen byte differ = diff (inc*)
. list if differ==

incil inc2 inc3 id differ
10. 42,491 41,491 41,491 110 1
11. 26,075 25,075 25,075 111 1
12. 26,283 25,283 25,283 112 1
78. 41,780 41,780 41,880 178 1
100. 25,687 26,687 25,687 200 1
101. 25,359 26,359 25,359 201 1
102. 25,969 26,969 25,969 202 1
103. 25,339 26,339 25,339 203 1
104. 25,296 26,296 25,296 204 1
105. 41,800 41,000 41,000 205 1
134. 26,233 26,233 26,133 234 1

Rather than typing diff (inc*), we could have typed diff (incl inc2 inc3).

Ranks

> Example 7: rank()

Most applications of rank() will be to one variable, but the argument exp can be more gen-
eral, namely, an expression. In particular, rank (-varname) reverses ranks from those obtained by
rank (varname).

The default ranking and those obtained by using one of the track, field, and unique options
differ principally in their treatment of ties. The default is to assign the same rank to tied values
such that the sum of the ranks is preserved. The track option assigns the same rank but resembles
the convention in track events; thus, if one person had the lowest time and three persons tied for
second-lowest time, their ranks would be 1, 2, 2, and 2, and the next person(s) would have rank 5.
The field option acts similarly except that the highest is assigned rank 1, as in field events in which
the greatest distance or height wins. The unique option breaks ties arbitrarily: its most obvious use
is assigning ranks for a graph of ordered values. See also group() for another kind of “ranking”.

. use http://www.stata-press.com/data/r14/auto, clear
(1978 Automobile Data)

. keep in 1/10

(64 observations deleted)

. egen rank = rank(mpg)

. egen rank_r = rank(-mpg)

. egen rank_f = rank(mpg), field

204 egen — Extensions to generate

. egen rank_t = rank(mpg), track

. egen rank_u = rank(mpg), unique
. egen rank_ur = rank(-mpg), unique
. sort rank_u

. list mpg rank*

mpg rank rank_r rank_f rank_t rank_u rank_ur
1. 15 1 10 10 1 1 10
2. 16 2 9 9 2 2 9
3. 17 3 8 8 3 3 8
4. 18 4 7 7 4 4 7
5. 19 5 6 6 5 5 6
6. 20 6.5 4.5 4 6 6 5
7. 20 6.5 4.5 4 6 7 4
8. 22 8.5 2.5 2 8 8 2
9. 22 8.5 2.5 2 8 9 3
10. 26 10 1 1 10 10 1

Standardized variables

> Example 8: std()

We have a variable called age recording the median age in the 50 states. We wish to create the
standardized value of age and verify the calculation:
. use http://www.stata-press.com/data/ri4/statesl, clear
(State data)
. egen stdage = std(age)

. summarize age stdage

Variable Obs Mean Std. Dev. Min Max
age 50 29.54 1.693445 24.2 34.7
stdage 50 6.41e-09 1 -3.1563336 3.047044
. correlate age stdage
(obs=50)

age stdage

age 1.0000
stdage 1.0000 1.0000

summarize shows that the new variable has a mean of approximately zero; 10~ is the precision of
a float and is close enough to zero for all practical purposes. If we wanted, we could have typed
egen double stdage = std(age), making stdage a double-precision variable, and the mean would
have been 10716, In any case, summarize also shows that the standard deviation is 1. correlate
shows that the new variable and the original variable are perfectly correlated.

egen — Extensions to generate 205

We may optionally specify the mean and standard deviation for the new variable. For instance,

. egen newagel = std(age), std(2)

. egen newage2 = std(age), mean(2) std(4)

. egen newage3

std(age),

mean (2)

. summarize age newagel-newage3

Variable Obs Mean Std. Dev. Min Max
age 50 29.54 1.693445 24.2 34.7
newagel 50 1.28e-08 2 -6.306671 6.094089
newage2 50 2 4 -10.61334 14.18818
newage3 50 2 1 -1.153336 5.047044
. correlate age newagel-newage3
(obs=50)
age newagel newage2 newage3
age 1.0000
newagel 1.0000 1.0000
newage2 1.0000 1.0000 1.0000
newage3 1.0000 1.0000 1.0000 1.0000

Row functions

> Example 9: rowtotal()

generate’s sum() function creates the vertical, running sum of its argument, whereas egen’s
total () function creates a constant equal to the overall sum. egen’s rowtotal () function, however,
creates the horizontal sum of its arguments. They all treat missing as zero. However, if the missing
option is specified with total() or rowtotal(), then newvar will contain missing values if all
values of exp or varlist are missing.

. use http://www.stata-press.com/data/r14/egenxmpl4, clear
. egen hsum = rsum(a b c)
. generate vsum = sum(hsum)

. egen sum = sum(hsum)

. list
a b c hsum vsum sum
1. . 2 3 5 5 63
2. 4 6 10 15 63
3. 7 8 . 15 30 63
4. 10 11 12 33 63 63

206 egen — Extensions to generate

> Example 10: rowmean(), rowmedian(), rowpctile(), rowsd(), and rownonmiss()

summarize displays the mean and standard deviation of a variable across observations; program
writers can access the mean in r(mean) and the standard deviation in r(sd) (see [R] summarize).
egen’s rowmean () function creates the means of observations across variables. rowmedian() creates
the medians of observations across variables. rowpctile () returns the #th percentile of the vari-
ables specified in varlist. rowsd () creates the standard deviations of observations across variables.
rownonmiss() creates a count of the number of nonmissing observations, the denominator of the
rowmean() calculation:

. use http://www.stata-press.com/data/r14/egenxmpl4, clear
. egen avg = rowmean(a b c)

. egen median = rowmedian(a b c¢)

. egen pct25 = rowpctile(a b c), p(25)

. egen std = rowsd(a b c)

. egen n = rownonmiss(a b c¢)

. list
a b c avg median pct25 std n
1. 2 3 2.5 2.5 2 .7071068 2
2. 4 6 5 5 4 1.414214 2
3. 7 8 7.5 7.5 7 .7071068 2
4. 10 11 12 11 11 10 1 3

> Example 11: rowmiss()
rowmiss () returns k — rownonmiss (), where k is the number of variables specified. rowmiss ()
can be especially useful for finding casewise-deleted observations caused by missing values.

. use http://www.stata-press.com/data/r14/auto3, clear
(1978 Automobile Data)

. correlate price weight mpg

(obs=70)
price weight mpg
price 1.0000
weight 0.5309 1.0000
mpg -0.4478 -0.7985 1.0000

. egen excluded = rmiss(price weight mpg)

. list make price weight mpg if excluded~=0

make price weight mpg

5. Buick Electra . 4,080 15
12. Cad. Eldorado 14,500 3,900
40. 0lds Starfire 4,195

. 24
51. Pont. Phoenix . 3,420

egen — Extensions to generate 207

> Example 12: rowmin(), rowmax(), rowfirst(), and rowlast()

rowmin(), rowmax (), rowfirst (), and rowlast () return the minimum, maximum, first, or last
nonmissing value, respectively, for the specified variables within an observation (row).

. use http://www.stata-press.com/data/r14/egenxmpl5, clear

. egen min = rmin(x y z)
(1 missing value generated)

. egen max = rmax(x y z)
(1 missing value generated)

. egen first = rfirst(x y 2z)
(1 missing value generated)

. egen last = rlast(x y z)
(1 missing value generated)

. list, sep(4)

X y z min max first last
1 -1 2 3 -1 3 -1 3
2 -6 . -6 -6 -6 -6
3 7 -5 -5 7 7 -5
4 .
5. 4 4 4 4 4
6. 8 8 8 8 8
7. 3 7 3 7 3 7
8. 5 -1 6 -1 6 5 6

Categorical and integer variables

> Example 13: anyvalue(), anymatch(), and anycount()

anyvalue(), anymatch(), and anycount () are for categorical or other variables taking integer
values. If we define a subset of values specified by an integer numlist (see [U] 11.1.8 numlist),
anyvalue () extracts the subset, leaving every other value missing; anymatch() defines an indicator
variable (1 if in subset, O otherwise); and anycount () counts occurrences of the subset across a set
of variables. Therefore, with just one variable, anymatch(varname) and anycount (varname) are
equivalent.

With the auto dataset, we can generate a variable containing the high values of rep78 and a
variable indicating whether rep78 has a high value:

. use http://www.stata-press.com/data/ri4/auto, clear
(1978 Automobile Data)

. egen hirep = anyvalue(rep78), v(3/5)
(15 missing values generated)

. egen ishirep = anymatch(rep78), v(3/5)

Here it is easy to produce the same results with official Stata commands:

. generate hirep = rep78 if inlist(rep78,3,4,5)
. generate byte ishirep = inlist(rep78,3,4,5)

208 egen — Extensions to generate

However, as the specification becomes more complicated or involves several variables, the egen
functions may be more convenient.

N

> Example 14: group()

group () maps the distinct groups of a varlist to a categorical variable that takes on integer values
from 1 to the total number of groups. order of the groups is that of the sort order of varlist. The varlist
may be of numeric variables, string variables, or a mixture of the two. The resulting variable can be
useful for many purposes, including stepping through the distinct groups easily and systematically
and cleaning up an untidy ordering. Suppose that the actual (and arbitrary) codes present in the data
are 1, 2, 4, and 7, but we desire equally spaced numbers, as when the codes will be values on one
axis of a graph. group() maps these to 1, 2, 3, and 4.

We have a variable agegrp that takes on the values 24, 40, 50, and 65, corresponding to age
groups 18-24, 25—-40, 41-50, and 51 and above. Perhaps we created this coding using the recode ()
function (see [U] 13.3 Functions and [U] 25 Working with categorical data and factor variables)
from another age-in-years variable:

. generate agegrp=recode(age,24,40,50,65)
We now want to change the codes to 1, 2, 3, and 4:

. egen agegrp2 = group(agegrp) q

> Example 15: group() with missing values

We have two categorical variables, race and sex, which may be string or numeric. We want to
use ir (see [R] epitab) to create a Mantel-Haenszel weighted estimate of the incidence rate. ir,
however, allows only one variable to be specified in its by () option. We type

. use http://www.stata-press.com/data/r14/egenxmpl6, clear

. egen racesex = group(race sex)
(2 missing values generated)

. ir deaths smokes pyears, by(racesex)
(output omitted)

The new numeric variable, racesex, will be missing wherever race or sex is missing (meaning .
for numeric variables and "" for string variables), so missing values will be handled correctly. When
we list some of the data, we see

. list race sex racesex in 1/7, sep(0)

race sex racesex
1. White Female 1
2. White Male 2
3. Black Female 3
4. Black Male 4
5. Black Male 4
6. . Female

7. Black

group() began by putting the data in the order of the grouping variables and then assigned the
numeric codes. Observations 6 and 7 were assigned to racesex==. because, in one case, race was
not known, and in the other, sex was not known. (These observations were not used by ir.)

egen — Extensions to generate 209

If we wanted the unknown groups to be treated just as any other category, we could have typed

. egen rs2=group(race sex), missing

. list race sex rs2 in 1/7, sep(0)

race sex rs2
1. White Female 1
2. White Male 2
3. Black Female 3
4. Black Male 4
5. Black Male 4
6. . Female 6
7. Black 5

N

The resulting variable from group() does not have value labels. Therefore, the values carry no
indication of meaning. Interpretation requires comparison with the original varlist.

The label option produces a categorical variable with value labels. These value labels are either
the actual values of varname or any value labels of varname, if they exist. The values of varname
could be as long as those of one str2045 variable, but value labels may be no longer than 80
characters.

String variables

Concatenation of string variables is provided in Stata. In context, Stata understands the addition
symbol + as specifying concatenation or adding strings end to end. "soft" + "ware" produces
"software", and given string variables s1 and s2, s1 + s2 indicates their concatenation.

The complications that may arise in practice include wanting 1) to concatenate the string versions
of numeric variables and 2) to concatenate variables, together with some separator such as a space
or a comma. Given numeric variables n1 and n2,

. generate newstr = sl + string(nl) + string(n2) + s2

shows how numeric values may be converted to their string equivalents before concatenation, and

. generate newstr = s1 + " " + s2 + " " + 83

shows how spaces may be added between variables. Stata will automatically assign the most appropriate
data type for the new string variables.

> Example 16: concat()

concat () allows us to do everything in one line concisely.

. egen newstr = concat(sl nl n2 s2)

carries with it an implicit instruction to convert numeric values to their string equivalents, and the
appropriate string data type is worked out within concat () by Stata’s automatic promotion. Moreover,

. egen newstr = concat(sl s2 s3), p(" ")

specifies that spaces be used as separators. (The default is to have no separation of concatenated
strings.)

As an example of punctuation other than a space, consider

. egen fullname = concat(surname forename), p(", ")

210 egen — Extensions to generate

Noninteger numerical values can cause difficulties, but

. egen newstr = concat(nl n2), format(%9.3f) p(" ")

specifies the use of format %9.3f. This is equivalent to

nn

. generate strl newstr =
. replace newstr = string(ni1,"’%9.3f") + " " + string(n2,"%9.3f")

See [FN] String functions for more about string().

4

As a final flourish, the decode option instructs concat () to use value labels. With that option,
the maxlength() option may also be used. For more details about decode, see [D] encode. Unlike
the decode command, however, concat() uses string(varname), not "", whenever values of
varname are not associated with value labels, and the format () option, whenever specified, applies
to this use of string().

> Example 17: ends()

The ends(strvar) function is used for subdividing strings. The approach is to find specified
separators by using the strpos() string function and then to extract what is desired, which either
precedes or follows the separators, using the substr() string function.

By default, substrings are considered to be separated by individual spaces, so we will give definitions
in those terms and then generalize.

The head of the string is whatever precedes the first space or is the whole of the string if no space
occurs. This could also be called the first “word”. The tail of the string is whatever follows the first
space. This could be nothing or one or more words. The last word in the string is whatever follows
the last space or is the whole of the string if no space occurs.

To clarify, let’s look at some examples. The quotation marks here just mark the limits of each
string and are not part of the strings.

head tail last

"frog" "frog" " "frog"

"frog toad" "frog" "toad" "toad"
"frog toad newt" "frog" "toad newt" "newt"
"frog toad newt" "frog" " toad newt" "newt"
"frog toad newt" "frog" "toad newt" "newt"

The main subtlety is that these functions are literal, so the tail of "frog toad newt", in which
two spaces follow "frog", includes the second of those spaces, and is thus " toad newt". Therefore,
you may prefer to use the trim option to trim the result of any leading or trailing spaces, producing
"toad newt" in this instance.

The punct(pchars) option may be used to specify separators other than spaces. The general
definitions of the head, tail, and last options are therefore interpreted in terms of whatever
separator has been specified; that is, they are relative to the first or last occurrence of the separator
in the string value. Thus, with punct(,) and the string "Darwin, Charles Robert", the head is
"Darwin", and the tail and the last are both " Charles Robert". Note again the leading space in

this example, which may be trimmed with trim. The punctuation (here the comma, “,”) is discarded,
just as it is with one space.

egen — Extensions to generate 211

pchars, the argument of punct (), will usually, but not always, be one character. If two or more
characters are specified, these must occur together; for example, punct (: ;) would mean that words
are separated by a colon followed by a semicolon (that is, : ;). It is not implied, in particular, that the
colon and semicolon are alternatives. To do that, you would have to modify the programs presented
here or resort to first principles by using split; see [D] split.

With personal names, the head or last option might be applied to extract surnames if strings
were similar to "Darwin, Charles Robert" or "Charles Robert Darwin", with the surname
coming first or last. What then happens with surnames like "von Neumann" or "de la Mare"? "von
Neumann, John" is no problem, if the comma is specified as a separator, but the last option is
not intelligent enough to handle "Walter de la Mare" properly. For that, the best advice is to use
programs specially written for person-name extraction, such as extrname (Gould 1993).

4

U.S. marginal income tax rate

mtr (year income) (Schmidt 1993, 1994) returns the U.S. marginal income tax rate for a married
couple with taxable income income in year year, where 1930 < year < 2014.

> Example 18: mitr()

Schmidt (1993) examines the change in the progressivity of the U.S. tax schedule over the period
from 1930 to 1990. As a measure of progressivity, he calculates the difference in the marginal tax
rates at the 75th and 25th percentiles of income, using a dataset of percentiles of taxable income
developed by Hakkio, Rush, and Schmidt (1996). (Certain aspects of the income distribution are
imputed in these data.) A subset of the data contains the following:

. describe

Contains data from incomel.dta

obs: 61
vars: 4 12 Feb 2014 03:33
size: 1,020
storage display value
variable name type format label variable label
year float %9.0g Year
inc25 float %9.0g 25th percentile
inc50 float %9.0g 50th percentile
inc75 float %9.0g 75th percentile
Sorted by:
. summarize
Variable Obs Mean Std. Dev. Min Max
year 61 1960 17.75293 1930 1990
inc25 61 6948.272 6891.921 819.4 27227.35
incb0 61 11645.15 11550.71 1373.29 45632.43

inc75 61 18166.43 18019.1 2142.33 71186.58

212 egen — Extensions to generate

Given the series for income and the four-digit year, we can generate the marginal tax rates
corresponding to the 25th and 75th percentiles of income:
. egen mtr25 = mtr(year inc25)
. egen mtr75 = mtr(year inc75)

. summarize mtr25 mtr75

Variable | Obs Mean Std. Dev. Min Max
mtr25 61 .1664898 .0677949 .01125 .23
mtr75 61 .2442053 .1148427 .01125 .424625

Methods and formulas

Stata users have written many extra functions for egen. Type net search egen to locate Internet
sources of programs.

Acknowledgments

The mtr () function of egen was written by Timothy J. Schmidt of the Federal Reserve Bank of
Kansas City.

The cut () function was written by David Clayton of the Cambridge Institute for Medical Research
and Michael Hills (retired) of the London School of Hygiene and Tropical Medicine (1999a, 1999b,
1999c¢).

Many of the other egen functions were written by Nicholas J. Cox of the Department of Geography
at Durham University, UK, and coeditor of the Stata Journal and author of Speaking Stata Graphics.

References

Andrews, D. F, P. J. Bickel, F. R. Hampel, P. J. Huber, W. H. Rogers, and J. W. Tukey. 1972. Robust Estimates of
Location: Survey and Advances. Princeton: Princeton University Press.

Cappellari, L., and S. P. Jenkins. 2006. Calculation of multivariate normal probabilities by simulation, with applications
to maximum simulated likelihood estimation. Stata Journal 6: 156-189.

Clayton, D. G., and M. Hills. 1999a. dm66: Recoding variables using grouped values. Stata Technical Bulletin 49:
6-7. Reprinted in Stata Technical Bulletin Reprints, vol. 9, pp. 23-25. College Station, TX: Stata Press.

——. 1999b. dm66.1: Stata 6 version of recoding variables using grouped values. Stata Technical Bulletin 50: 3.
Reprinted in Stata Technical Bulletin Reprints, vol. 9, p. 25. College Station, TX: Stata Press.

——. 1999¢c. dm66.2: Update of cut to Stata 6. Stata Technical Bulletin 51: 2-3. Reprinted in Stata Technical Bulletin
Reprints, vol. 9, pp. 25-26. College Station, TX: Stata Press.

Cox, N. J. 1999. dm70: Extensions to generate, extended. Stata Technical Bulletin 50: 9-17. Reprinted in Stata
Technical Bulletin Reprints, vol. 9, pp. 34-45. College Station, TX: Stata Press.

——. 2000. dm70.1: Extensions to generate, extended: Corrections. Stata Technical Bulletin 57: 2. Reprinted in Stata
Technical Bulletin Reprints, vol. 10, p. 9. College Station, TX: Stata Press.

——. 2009. Speaking Stata: Rowwise. Stata Journal 9: 137-157.
——. 2014. Speaking Stata: Self and others. Stata Journal 14: 432-444.

Cox, N. J., and R. Goldstein. 1999a. dm72: Alternative ranking procedures. Stata Technical Bulletin 51: 5-7. Reprinted
in Stata Technical Bulletin Reprints, vol. 9, pp. 48-51. College Station, TX: Stata Press.

http://www.stata-journal.com/
http://www.stata-press.com/books/speaking-stata-graphics/
http://www.stata-journal.com/sjpdf.html?articlenum=st0101
http://www.stata-journal.com/sjpdf.html?articlenum=st0101
http://www.stata.com/products/stb/journals/stb49.pdf
http://www.stata.com/products/stb/journals/stb50.pdf
http://www.stata.com/products/stb/journals/stb51.pdf
http://www.stata.com/products/stb/journals/stb50.pdf
http://www.stata.com/products/stb/journals/stb57.pdf
http://www.stata-journal.com/sjpdf.html?articlenum=pr0046
http://www.stata-journal.com/article.html?article=dm0075
http://www.stata.com/products/stb/journals/stb51.pdf

egen — Extensions to generate 213

——. 1999b. dm72.1: Alternative ranking procedures: Update. Stata Technical Bulletin 52: 2. Reprinted in Stata
Technical Bulletin Reprints, vol. 9, p. 51. College Station, TX: Stata Press.

David, H. A. 1998. Early sample measures of variability. Statistical Science 13: 368-377.

Esman, R. M. 1998. dm55: Generating sequences and patterns of numeric data: An extension to egen. Stata Technical
Bulletin 43: 2-3. Reprinted in Stata Technical Bulletin Reprints, vol. 8, pp. 4-5. College Station, TX: Stata Press.

Gould, W. W. 1993. dm13: Person name extraction. Stata Technical Bulletin 13: 6-11. Reprinted in Stata Technical
Bulletin Reprints, vol. 3, pp. 25-31. College Station, TX: Stata Press.

Hakkio, C. S., M. Rush, and T. J. Schmidt. 1996. The marginal income tax rate schedule from 1930 to 1990. Journal
of Monetary Economics 38: 117-138.

Hampel, F. R., E. M. Ronchetti, P. J. Rousseeuw, and W. A. Stahel. 1986. Robust Statistics: The Approach Based
on Influence Functions. New York: Wiley.

Kohler, U., and J. Zeh. 2012. Apportionment methods. Stata Journal 12: 375-392.
Mitchell, M. N. 2010. Data Management Using Stata: A Practical Handbook. College Station, TX: Stata Press.

Ryan, P. 1999. dm71: Calculating the product of observations. Stata Technical Bulletin 51: 3—4. Reprinted in Stata
Technical Bulletin Reprints, vol. 9, pp. 45-48. College Station, TX: Stata Press.

——. 2001. dm87: Calculating the row product of observations. Stata Technical Bulletin 60: 3—4. Reprinted in Stata
Technical Bulletin Reprints, vol. 10, pp. 39-41. College Station, TX: Stata Press.

Salas Pauliac, C. H. 2013. group2: Generating the finest partition that is coarser than two given partitions. Stata
Journal 13: 867-875.

Schmidt, T. J. 1993. sssl: Calculating U.S. marginal income tax rates. Stata Technical Bulletin 15: 17-19. Reprinted
in Stata Technical Bulletin Reprints, vol. 3, pp. 197-200. College Station, TX: Stata Press.

——. 1994. sssl.1: Updated U.S. marginal income tax rate function. Stata Technical Bulletin 22: 29. Reprinted in
Stata Technical Bulletin Reprints, vol. 4, p. 224. College Station, TX: Stata Press.

Weiss, M. 2009. Stata tip 80: Constructing a group variable with specified group sizes. Stata Journal 9: 640-642.
Wilcox, R. R. 2003. Applying Contemporary Statistical Techniques. San Diego, CA: Academic Press.

Also see
[D] collapse — Make dataset of summary statistics
[D] generate — Create or change contents of variable
[U] 13.3 Functions

http://www.stata.com/products/stb/journals/stb52.pdf
http://www.stata.com/products/stb/journals/stb43.pdf
http://www.stata.com/products/stb/journals/stb13.pdf
http://www.stata-journal.com/article.html?article=st0265
http://www.stata-press.com/books/dmus.html
http://www.stata.com/products/stb/journals/stb51.pdf
http://www.stata.com/products/stb/journals/stb60.pdf
http://www.stata-journal.com/article.html?article=dm0073
http://www.stata.com/products/stb/journals/stb15.pdf
http://www.stata.com/products/stb/journals/stb22.pdf
http://www.stata-journal.com/sjpdf.html?articlenum=st0181

Title

encode — Encode string into numeric and vice versa

Description Quick start Menu Syntax
Options for encode Options for decode Remarks and examples Reference
Also see

Description

encode creates a new variable named newvar based on the string variable varname, creating, adding
to, or just using (as necessary) the value label newvar or, if specified, name. Do not use encode if
varname contains numbers that merely happen to be stored as strings; instead, use generate newvar
=real (varname) or destring; see [U] 23.2 Categorical string variables, [FN] String functions,
and [D] destring.

decode creates a new string variable named newvar based on the “encoded” numeric variable
varname and its value label.

Quick start

Generate numeric newvl from string v1, using the values of v1 to create a value label that is applied
to newvl

encode vl, generate(newvl)

As above, but name the value label mylabell
encode vl, generate(newvl) label(mylabell)

As above, but refuse to encode v1 if values exist in v1 that are not present in preexisting value label
mylabell

encode vl1, generate(newvl) label(mylabell) noextend

Convert numeric v2 to string newv2 using the value label applied to v2 to generate values of newv2
decode v2, generate(newv2)

Menu
encode

Data > Create or change data > Other variable-transformation commands > Encode value labels from string
variable

decode

Data > Create or change data > Other variable-transformation commands > Decode strings from labeled numeric
variable

214

encode — Encode string into numeric and vice versa 215

Syntax

String variable to numeric variable

encode varname [l_'f] [ln] , generate(newvar) [label(name) @xtend]

Numeric variable to string variable

decode varname [zf] [zn] , generate(newvar) [maxlength(#)]

Options for encode
generate(newvar) is required and specifies the name of the variable to be created.

label (name) specifies the name of the value label to be created or used and added to if the named
value label already exists. If 1abel() is not specified, encode uses the same name for the label
as it does for the new variable.

noextend specifies that varname not be encoded if there are values contained in varname that are
not present in label (name). By default, any values not present in label (name) will be added
to that label.

Options for decode

generate(newvar) is required and specifies the name of the variable to be created.

maxlength(#) specifies how many bytes of the value label to retain; # must be between 1 and
32000. The default is maxlength(32000).

Remarks and examples

Remarks are presented under the following headings:

encode
decode

encode

encode is most useful in making string variables accessible to Stata’s statistical routines, most of
which can work only with numeric variables. encode is also useful in reducing the size of a dataset.
If you are not familiar with value labels, read [U] 12.6.3 Value labels.

The maximum number of associations within each value label is 65,536 (1,000 for Small Stata).
Each association in a value label maps a string of up to 32,000 bytes to a number. For plain ASCII
text, the number of bytes is equal to the number of characters. If your string has other Unicode
characters, the number of bytes is greater than the number of characters. See [U] 12.4.2 Handling
Unicode strings. If your variable contains string values longer than 32,000 bytes, then only the first
32,000 bytes are retained and assigned as a value label to a number.

216 encode — Encode string into numeric and vice versa

> Example 1

We have a dataset on high blood pressure, and among the variables is sex, a string variable
containing either “male” or “female”. We wish to run a regression of high blood pressure on race, sex,
and age group. We type regress hbp race sex age_grp and get the message “no observations”.

. use http://www.stata-press.com/data/r14/hbp2

. regress hbp sex race age_grp
no observations
r(2000) ;

Stata’s statistical procedures cannot directly deal with string variables; as far as they are concerned,
all observations on sex are missing. encode provides the solution:

. encode sex, gen(gender)

. regress hbp gender race age_grp

Source SS daf MS Number of obs = 1,121
F(3, 1117) = 15.15

Model 2.01013476 3 .67004492 Prob > F = 0.0000
Residual 49.3886164 1,117 .044215413 R-squared = 0.0391
Adj R-squared = 0.0365

Total 51.3987511 1,120 .045891742 Root MSE = .21027
hbp Coef. Std. Err. t P>|t] [95% Conf. Intervall
gender .0394747 .0130022 3.04 0.002 .0139633 .0649861
race -.0409453 .0113721 -3.60 0.000 -.06325684 -.0186322
age_grp .0241484 .00624 3.87 0.000 .0119049 .0363919
_cons -.016815 .0389167 -0.43 0.666 -.093173 .059543

encode looks at a string variable and makes an internal table of all the values it takes on, here
“male” and “female”. It then alphabetizes that list and assigns numeric codes to each entry. Thus 1
becomes “female” and 2 becomes “male”. It creates a new int variable (gender) and substitutes a
1 where sex is “female”, a 2 where sex is “male”, and a missing (.) where sex is null (""). It
creates a value label (also named gender) that records the mapping 1 <+ female and 2 <+ male.
Finally, encode labels the values of the new variable with the value label.

N

> Example 2

It is difficult to distinguish the result of encode from the original string variable. For instance, in
our last two examples, we typed encode sex, gen(gender). Let’s compare the two variables:

. list sex gender in 1/4

sex gender

1. female female
2. .
3. male male
4. male male

They look almost identical, although you should notice the missing value for gender in the second
observation.

encode — Encode string into numeric and vice versa 217

The difference does show, however, if we tell 1ist to ignore the value labels and show how the
data really appear:

. list sex gender in 1/4, nolabel

sex gender

1. female 1
2.

3. male 2
4. male 2

We could also ask to see the underlying value label:

. label list gender
gender:
1 female
2 male

gender really is a numeric variable, but because all Stata commands understand value labels, the
variable displays as “male” and “female”, just as the underlying string variable sex would.

4

> Example 3

We can drastically reduce the size of our dataset by encoding strings and then discarding the
underlying string variable. We have a string variable, sex, that records each person’s sex as “male”
and “female”. Because female has six characters, the variable is stored as a str6.

We can encode the sex variable and use compress to store the variable as a byte, which takes
only 1 byte. Because our dataset contains 1,130 people, the string variable takes 6,780 bytes, but the
encoded variable will take only 1,130 bytes.

. use http://www.stata-press.com/data/r14/hbp2, clear
. describe

Contains data from http://www.stata-press.com/data/r14/hbp2.dta

obs: 1,130

vars: 7 3 Mar 2014 06:47

size: 24,860

storage display value

variable name type format label variable label

id str10 %10s Record identification number
city byte %8.0g
year int %8.0g
age_grp byte %8.0g agefmt
race byte %8.0g racefmt
hbp byte %8.0g yn high blood pressure
sex stré %9s
Sorted by:

. encode sex, generate(gender)

218 encode — Encode string into numeric and vice versa

. list sex gender in 1/5

sex gender
1. female female
2. .
3. male male
4. male male
5. female female

. drop sex

. rename gender sex

. compress
variable sex was long now byte
(3,390 bytes saved)

. describe

Contains data from http://www.stata-press.com/data/r14/hbp2.dta

obs: 1,130
vars: 7 3 Mar 2014 06:47
size: 19,210
storage display value
variable name type format label variable label
id stri0 %10s Record identification number
city byte %8.0g
year int %8.0g
age_grp byte %8.0g agefmt
race byte %8.0g racefmt
hbp byte %8.0g yn high blood pressure
sex byte %8.0g gender
Sorted by:

Note: Dataset has changed since last saved.

The size of our dataset has fallen from 24,860 bytes to 19,210 bytes.

Q Technical note

In the examples above, the value label did not exist before encode created it, because that is not
required. If the value label does exist, encode uses your encoding as far as it can and adds new
mappings for anything not found in your value label. For instance, if you wanted “female” to be
encoded as O rather than 1 (possibly for use in linear regression), you could type

. label define gender O "female"

. encode sex, gen(gender)
You can also specify the name of the value label. If you do not, the value label is assumed to have
the same name as the newly created variable. For instance,

. label define sexlbl 0 "female"

. encode sex, gen(gender) label(sexlbl)

encode — Encode string into numeric and vice versa 219

decode

decode is used to convert numeric variables with associated value labels into true string variables.

> Example 4
We have a numeric variable named female that records the values O and 1. female is associated
with a value label named sex1bl that says that 0 means male and 1 means female:

. use http://www.stata-press.com/data/r14/hbp3, clear

. describe female

storage display value
variable name type format label variable label
female byte %8.0g sex1lbl
. label list sexlbl
sexlbl:
0 male
1 female

We see that female is stored as a byte. It is a numeric variable. Nevertheless, it has an associated
value label describing what the numeric codes mean, so if we tabulate the variable, for instance,
it appears to contain the strings “male” and “female”:

. tabulate female

female Freq. Percent Cum.

male 695 61.61 61.61
female 433 38.39 100.00
Total 1,128 100.00

We can create a real string variable from this numerically encoded variable by using decode:

. decode female, gen(sex)

. describe sex

storage display value
variable name type format label variable label
sex stré %9s

We have a new variable called sex. It is a string, and Stata automatically created the shortest possible
string. The word “female” has six characters, so our new variable is a str6. female and sex appear
indistinguishable:

. list female sex in 1/4

female sex

female female

male male
male male

W N =

220 encode — Encode string into numeric and vice versa

But when we add nolabel, the difference is apparent:

. list female sex in 1/4, nolabel

female sex
1. 1 female
2. .
3. 0 male
4. 0 male
d
> Example 5

decode is most useful in instances when we wish to match-merge two datasets on a variable that
has been encoded inconsistently.

For instance, we have two datasets on individual states in which one of the variables (state)
takes on values such as “CA” and “NY”. The state variable was originally a string, but along the way
the variable was encoded into an integer with a corresponding value label in one or both datasets.

We wish to merge these two datasets, but either 1) one of the datasets has a string variable for
state and the other an encoded variable or 2) although both are numeric, we are not certain that the
codings are consistent. Perhaps “CA” has been coded 5 in one dataset and 6 in another.

Because decode will take an encoded variable and turn it back into a string, decode provides the

solution:

use first (load the first dataset)
decode state, gen(st) (make a string state variable)
drop state (discard the encoded variable)
sort st (sort on string)
save first, replace (save the dataset)
use second (load the second dataset)
decode state, gen(st) (make a string variable)
drop state (discard the encoded variable)
sort st (sort on string)
merge 1:1 st using first (merge the data) q

Reference

Schechter, C. B. 2011. Stata tip 99: Taking extra care with encode. Stata Journal 11: 321-322.

Also see

[D] compress — Compress data in memory

[D] destring — Convert string variables to numeric variables and vice versa
[D] generate — Create or change contents of variable

[U] 12.6.3 Value labels

[U] 23.2 Categorical string variables

http://www.stata-journal.com/sjpdf.html?articlenum=dm0057

Title

erase — Erase a disk file

Description Quick start Syntax Remarks and examples
Also see

Description

The erase command erases files stored on disk. rm is a synonym for erase for the convenience
of Mac and Unix users.

Stata for Mac users: erase is permanent; the file is not moved to the Trash but is immediately
removed from the disk.

Stata for Windows users: erase is permanent; the file is not moved to the Recycle Bin but is
immediately removed from the disk.

Quick start

Delete mylog.smcl from current directory in Stata for Windows
erase mylog.smcl

Same as above for Mac and Unix
rm mylog.smcl

Delete mydata.dta from current directory in Stata for Windows
erase mydata.dta

Same as above for Mac and Unix
rm mydata.dta

Delete mylog.smcl from C:\my dir\my folder in Stata for Windows
erase "c:\my dir\my folder\mylog.smcl"

Same as above for Mac and Unix
rm "~/my dir/my folder/mylog.smcl"

Syntax
{ erase |rm } ["]_ﬁlename [“}

Note: Double quotes must be used to enclose filename if the name contains spaces.

Remarks and examples

The only difference between Stata’s erase (rm) command and the DOS DEL or Unix rm(1) command
is that we may not specify groups of files. Stata requires that we erase files one at a time.

Mac users may prefer to discard files by dragging them to the Trash.
Windows users may prefer to discard files by dragging them to the Recycle Bin.

221

222 erase — Erase a disk file

> Example 1

Stata provides seven operating system equivalent commands: cd, copy, dir, erase, mkdir, rmdir,
and type, or, from the Unix perspective, cd, copy, 1s, rm, mkdir, rmdir, and cat. These commands
are provided for Mac users, too. Stata users can also issue any operating system command by using
Stata’s shell command, so you should never have to exit Stata to perform some housekeeping detail.

Suppose that we have the file mydata.dta stored on disk and we wish to permanently eliminate
it:

. erase mydata
file mydata not found
r(601);

. erase mydata.dta

Our first attempt, erase mydata, was unsuccessful. Although Stata ordinarily supplies the file
extension for you, it does not do so when you type erase. You must be explicit. Our second attempt
eliminated the file. Unix users could have typed rm mydata.dta if they preferred.

d

Also see
[D] ed — Change directory
[D] copy — Copy file from disk or URL
[D] dir — Display filenames
[D] mkdir — Create directory
[D] rmdir — Remove directory
[D] shell — Temporarily invoke operating system
[D] type — Display contents of a file

[U] 11.6 Filenaming conventions

Title

expand — Duplicate observations

Description Quick start Menu Syntax
Option Remarks and examples References Also see

Description

expand replaces each observation in the dataset with n copies of the observation, where n is equal
to the required expression rounded to the nearest integer. If the expression is less than 1 or equal to
missing, it is interpreted as if it were 1, and the observation is retained but not duplicated.

Quick start

Duplicate each observation 3 times, resulting in the original and 2 copies
expand 3

Duplicate each observation the number of times stored in v

expand v

As above, but flag duplicated observations using generated newv

expand v, generate(newv)

As above, but only duplicate observations where catvar equals 4
expand v if catvar==4, generate(newv)

Menu

Data > Create or change data > Other variable-transformation commands > Duplicate observations

223

224 expand — Duplicate observations

Syntax

expand [=]exp [lf] [ll’l] [, @erate(newvar)]

Option

generate(newvar) creates new variable newvar containing O if the observation originally appeared
in the dataset and 1 if the observation is a duplicate. For instance, after an expand, you could
revert to the original observations by typing keep if newvar==0.

Remarks and examples

> Example 1
expand is, admittedly, a strange command. It can, however, be useful in tricky programs or for
reformatting data for survival analysis (see examples in [R] epitab). Here is a silly use of expand:

. use http://www.stata-press.com/data/r14/expandxmpl
. list

=]
™

D WN -
WN - O
G WN

. expand n

(1 negative count ignored; observation not deleted)
(1 zero count ignored; observation not deleted)

(3 observations created)

. list

n x
1. -1 1
2. 0o 2
3. 1 3
4. 2 4
5. 3 5
6 2 4
7 3 5
8 3 5

The new observations are added to the end of the dataset. expand informed us that it created 3
observations. The first 3 observations were not replicated because n was less than or equal to 1. n is
2 in the fourth observation, so expand created one replication of this observation, bringing the total
number of observations of this type to 2. expand created two replications of observation 5 because
n is 3.

Because there were 5 observations in the original dataset and because expand adds new observations
onto the end of the dataset, we could now undo the expansion by typing drop in 6/1.

4

expand — Duplicate observations

225

References
Cox, N. J. 2013. Stata tip 114: Expand paired dates to pairs of dates. Stata Journal 13: 217-219.
——. 2014. Stata tip 119: Expanding datasets for graphical ends. Stata Journal 14: 230-235.

Also see
[D] contract — Make dataset of frequencies and percentages
[D] expandcl — Duplicate clustered observations

[D] fillin — Rectangularize dataset

http://www.stata-journal.com/article.html?article=dm0068
http://www.stata-journal.com/article.html?article=gr0058

Title

expandcl — Duplicate clustered observations

Description Quick start Menu Syntax
Options Remarks and examples Also see

Description

expandcl duplicates clusters of observations and generates a new variable that identifies the
clusters uniquely.

expandcl replaces each cluster in the dataset with n copies of the cluster, where n is equal to the
required expression rounded to the nearest integer. The expression is required to be constant within
cluster. If the expression is less than 1 or equal to missing, it is interpreted as if it were 1, and the
cluster is retained but not duplicated.

Quick start

Duplicate each set of observations on clusters identified by cvar 3 times and store new cluster
identifier in newcv

expandcl 3, cluster(cvar) generate(newcv)

Duplicate each cluster of observations the number of times stored in v
expandcl v, cluster(cvar) generate(newcv)

Menu

Data > Create or change data > Other variable-transformation commands > Duplicate clustered observations

226

expandcl — Duplicate clustered observations 227

Syntax

expandcl [=]exp [lf] [in}, cluster(varlist) generate(newvar)

Options
cluster(varlist) is required and specifies the variables that identify the clusters before expanding
the data.

generate(newvar) is required and stores unique identifiers for the duplicated clusters in newvar.
newvar will identify the clusters by using consecutive integers starting from 1.

Remarks and examples

> Example 1

We will show how expandcl works by using a small dataset with five clusters. In this dataset,
c1 identifies the clusters, x contains a unique value for each observation, and n identifies how many
copies we want of each cluster.

. use http://www.stata-press.com/data/r14/expclxmpl
. list, sepby(cl)

cl bd n
1. 10 1 -1
2. 10 2 -1
3. 20 3 0
4. 20 4 0
5. 30 5 1
6. 30 6 1
7. 40 7 2.7
8. 40 8 2.7
9. 50 9 3
10. 50 10 3
11. 60 11
12. 60 12

. expandcl n, generate(newcl) cluster(cl)

(2 missing counts ignored; observations not deleted)
(2 noninteger counts rounded to integer)

(2 negative counts ignored; observations not deleted)
(2 zero counts ignored; observations not deleted)

(8 observations created)

. sort mnewcl cl x

228 expandcl — Duplicate clustered observations

. list, sepby(newcl)

cl X n newcl

1. 10 1 -1 1

2. 10 2 -1 1

3. 20 3 0 2

4. 20 4 0 2

5. 30 5 1 3

6. 30 6 1 3

7. 40 7 2.7 4

8. 40 8 2.7 4

9. 40 7 2.7 5

10. 40 8 2.7 5
11. 40 7 2.7 6
12. 40 8 2.7 6
13. 50 9 3 7
14. 50 10 3 7
15. 50 9 3 8
16. 50 10 3 8
17. 50 9 3 9
18. 50 10 3 9
19. 60 11 . 10
20. 60 12 . 10

The first three clusters were not replicated because n was less than or equal to 1. n is 2.7 in the fourth
cluster, so expandcl created two replications (2.7 was rounded to 3) of this cluster, bringing the
total number of clusters of this type to 3. expandcl created two replications of cluster 50 because
n is 3. Finally, expandcl did not replicate the last cluster because n was missing.

4

Also see
[D] expand — Duplicate observations

[R] bsample — Sampling with replacement

Title

export — Overview of exporting data from Stata

Description Remarks and examples Also see

Description

This entry provides a quick reference for determining which method to use for exporting Stata
data from memory to other formats.

Remarks and examples

Remarks are presented under the following headings:

Summary of the different methods
export excel
export delimited
odbc
outfile
export sasxport
xmlsave

Summary of the different methods

export excel

o export excel creates Microsoft Excel worksheets in .x1s and .xlsx files.
o Entire worksheets can be exported, or custom cell ranges can be overwritten.

o See [D] import excel.

export delimited

o export delimited creates comma-separated or tab-delimited files that many other programs can
read.

o A custom delimiter may also be specified.
o The first line of the file can optionally contain the names of the variables.

o See [D] import delimited.

odbc

o ODBC, an acronym for Open DataBase Connectivity, is a standard for exchanging data between
programs. Stata supports the ODBC standard for exporting data via the odbc command and can
write to any ODBC data source on your computer.

o See [D] odbec.

229

230 export — Overview of exporting data from Stata

outfile
o outfile creates text-format datasets.
o The data can be written in space-separated or comma-separated format.
o Alternatively, the data can be written in fixed-column format.

o See [D] outfile.

export sasxport

o export sasxport saves SAS XPORT Transport format files.
o export sasxport can also write value label information to a formats.xpf XPORT file.

o See [D] import sasxport.

xmlsave

o xmlsave writes extensible markup language (XML) files—highly adaptable text-format files derived
from the standard generalized markup language (SGML).

o xmlsave can write either an Excel-format XML or a Stata-format XML file.

o See [D] xmlsave.

Also see

[D] import delimited — Import delimited text data

[D] import excel — Import and export Excel files

[D] import sasxport — Import and export datasets in SAS XPORT format
[D] odbe — Load, write, or view data from ODBC sources

[D] outfile — Export dataset in text format

[D] xmlsave — Export or import dataset in XML format

[D] import — Overview of importing data into Stata

Title

filefilter — Convert ASCII or binary patterns in a file

Description Quick start Syntax Options
Remarks and examples Stored results Reference Also see

Description

filefilter reads an input file, searching for oldpattern. Whenever a matching pattern is found,
it is replaced with newpattern. All resulting data, whether matching or nonmatching, are then written
to the new file.

Because of the buffering design of filefilter, arbitrarily large files can be converted quickly.
filefilter is also useful when traditional editors cannot edit a file, such as when unprintable ASCII
characters are involved. In fact, converting end-of-line characters between Mac OS X, Classic Mac,
Windows, and Unix is convenient with the EOL codes.

Unicode is not directly supported at this time, but UTF-8 encoded files can be operated on by using
byte-sequence methods in some cases.

Although it is not mandatory, you may want to use quotes to delimit a pattern, protecting the
pattern from Stata’s parsing routines. A pattern that contains blanks must be in quotes.

Quick start

Create newfile.txt from oldfile.txt by replacing all tabs with semicolons
filefilter oldfile.txt newfile.txt, from(\t) to(";")

Create newfile.txt from oldfile.txt by replacing all instances of “The” with “the”
filefilter oldfile.txt newfile.txt, from("The") to("the")

231

232 filefilter — Convert ASCII or binary patterns in a file

Syntax

filefilter oldfile newfile ,

{irom(oldpattern) to(newpattern) | ascii2ebcdic | ebcdic2ascii } [options]

where oldpattern and newpattern for ASCII characters are

"string" or string

string := [char[charlchar(...]11]]
char := regchar | code

regchar := ASCII 32-91, 93-127, or
extended ASCII 128, 161-255; excludes ‘\’

code := \BS backslash
\r carriage return
\n newline
\t tab
\M Classic Mac EOL, or \r
\W Windows EOL, or \r\n
\U Unix or Mac EOL, or \n
\LQ left single quote, *
\RQ right single quote, ’
\Q double quote, ”
\$ dollar sign, $
\###d 3-digit [0-9] decimal ASCII
\##h 2-digit [0-9, A-F] hexadecimal ASCII
options Description

* from(oldpattern) find oldpattern to be replaced

*to (newpattern) use newpattern to replace occurrences of from()
*ascii2ebcdic convert file from ASCII to EBCDIC
*ebcdic2ascii convert file from EBCDIC to ASCII

replace replace newfile if it already exists

* Both from(oldpattern) and to(newpattern) are required, or ascii2ebcdic or ebcdic2ascii is required.

Options
from(oldpattern) specifies the pattern to be found and replaced. It is required unless ascii2ebcdic
or ebcdic2ascii is specified.

to (newpattern) specifies the pattern used to replace occurrences of from(). It is required unless
ascii2ebcdic or ebcdic2ascii is specified.

ascii2ebcdic specifies that characters in the file be converted from ASCII coding to EBCDIC coding.
from(), to(), and ebcdic2ascii are not allowed with ascii2ebcdic.

ebcdic2ascii specifies that characters in the file be converted from EBCDIC coding to ASCII coding.
from(), to(), and ascii2ebcdic are not allowed with ebcdic2ascii.

replace specifies that newfile be replaced if it already exists.

filefilter — Convert ASCII or binary patterns in a file 233

Remarks and examples

Convert Classic Mac-style EOL characters to Windows-style

. filefilter macfile.txt winfile.txt, from(\M) to(\W) replace

Convert left quote (‘) characters to the string “left quote”

. filefilter autol.csv auto2.csv, from(\LQ) to("left quote")

Convert the character with hexidecimal code 60 to the string “left quote”

. filefilter autol.csv auto2.csv, from(\60h) to("left quote")

Convert the character with decimal code 96 to the string “left quote”

. filefilter autol.csv auto2.csv, from(\096d) to("left quote")
Convert strings beginning with hexidecimal code 6B followed by “Text” followed by decimal character
100 followed by “Text” to an empty string (remove them from the file)

. filefilter filel.txt file2.txt, from("\6BhText\100dText") to("")

Convert file from EBCDIC to ASCII encoding

. filefilter ebcdicfile.txt asciifile.txt, ebcdic2ascii

Q Technical note

Unicode is not directly supported at this time, but you can try to operate on a UTF-8 encoded
Unicode file by working on the byte sequence representation of the UTF-8 encoded Unicode character.
For example, the Unicode character €, the Latin small letter “e” with an acute accent (Unicode code
point \u00e9), has the byte sequence representation (195,169). You can obtain the byte sequence by
using tobytes("é"). Although you may use 195 and 169 in regchar and code, they will be treated
as two separate bytes instead of one character é (195 followed by 169). In short, this goes beyond
the original design of the command and is technically unsupported. If you try to use filefilter in
this way, you might encounter problems.

a

Stored results
filefilter stores the following in r():

Scalars
r(occurrences) number of oldpattern found
r(bytes_from) # of bytes represented by oldpattern
r(bytes_to) # of bytes represented by newpattern

Reference
Riley, A. R. 2008. Stata tip 60: Making fast and easy changes to files with filefilter. Stata Journal 8: 290-292.

http://www.stata-journal.com/sjpdf.html?articlenum=pr0039

234 filefilter — Convert ASCII or binary patterns in a file

Also see
[P] file — Read and write text and binary files
[D] changeeol — Convert end-of-line characters of text file

[D] hexdump — Display hexadecimal report on file

Title

fillin — Rectangularize dataset

Description Quick start Menu Syntax
Remarks and examples References Also see

Description

fillin adds observations with missing data so that all interactions of varlist exist, thus making
a complete rectangularization of varlist. £i11in also adds the variable _fillin to the dataset.
_fillin is 1 for observations created by using £illin and O for previously existing observations.

varlist may not contain strLs.

Quick start

Add observations so that all possible interactions of v1 and v2 exist and flag new observations with
_fillin =1
fillin v1 v2

As above, but also include interactions with v3
fillin v1 v2 v3

Menu

Data > Create or change data > Other variable-transformation commands > Rectangularize dataset

Syntax

fillin varlist

235

236 fillin — Rectangularize dataset

Remarks and examples

> Example 1

We have data on something by sex, race, and age group. We suspect that some of the combinations
of sex, race, and age do not exist, but if so, we want them to exist with whatever remaining variables
there are in the dataset set to missing. For example, rather than having a missing observation for
black females aged 20—24, we want to create an observation that contains missing values:

. use http://www.stata-press.com/data/r14/fillinl

. list
sex race age_gr~p x1 x2
1. female white 20-24 20393 14.5
2. male white 25-29 32750 12.7
3. female black 30-34 39399 14.2

. fillin sex race age_group

. list, sepby(sex)

sex race age_gr~p x1 x2 _fillin

1. female white 20-24 20393 14.5 0
2. female white 25-29 1
3. female white 30-34 1
4. female black 20-24 1
5. female black 25-29 . . 1
6. female black 30-34 39399 14.2 0
T. male white 20-24 . . 1
8. male white 25-29 32750 12.7 0
9. male white 30-34 1
10. male black 20-24 1
11. male black 25-29 1
12. male black 30-34 1

N
References

Baum, C. F. 2009. An Introduction to Stata Programming. College Station, TX: Stata Press.
Cox, N. J. 2005. Stata tip 17: Filling in the gaps. Stata Journal 5: 135-136.

Also see
[D] cross — Form every pairwise combination of two datasets
[D] expand — Duplicate observations
[D] joinby — Form all pairwise combinations within groups

[D] save — Save Stata dataset

http://www.stata-press.com/books/isp.html
http://www.stata-journal.com/sjpdf.html?articlenum=dm0011

Title

format — Set variables’ output format

Description Quick start Menu Syntax
Option Remarks and examples References Also see

Description

format varlist % fmt and format % fint varlist are the same commands. They set the display format
associated with the variables specified. The default formats are a function of the type of the variable:

byte %8.0g
int %8.0g
long %12.0g
float %9.0g
double %10.0g
str# WHs
strL %9s

set dp sets the symbol that Stata uses to represent the decimal point. The default is period,
meaning that one and a half is displayed as 1.5.

format [varlist] displays the current formats associated with the variables. format by itself lists
all variables that have formats too long to be listed in their entirety by describe. format varlist
lists the formats for the specified variables regardless of their length. format * lists the formats for
all the variables.

Quick start

Show 10-digit v1 as whole numbers with commas
format v1 %15.0gc

Same as above
format %15.0gc vi

Left-align string variable v2 of type str20
format v2 %-20s

Show 3-digit v3 with 1 digit after the decimal
format v3 %4.1f

Left-align v4 and v5 and show with leading zeros if less than 4 digits in length
format v4 vb5 %-04.0f

Show v6 in Stata default date format like 19jun2014
format v6 %td

As above, but show v6 in a date format like 06/14/2014
format v6 %tdNN/DD/CCYY

Menu

Data > Variables Manager

237

238 format — Set variables’ output format

Syntax
Set formats

format varlist %, fimt

format ¥ fint varlist

Set style of decimal point

set dp {@ma|&iod} [, permanently]

Display long formats

format [varlist]

where % fimt can be a numerical, date, business calendar, or string format.

Numerical % fimt Description Example
right-justified

W .#g general %9.0g

W HE fixed %9.2f

W . He exponential %10.7e

%21x hexadecimal %21x

%16H binary, hilo %16H

%16L binary, lohi %16L

%8H binary, hilo %8H

%8L binary, lohi %8L
right-justified with commas

W# . #gc general %9 .0gc

W# Hfc fixed %9.2fc
right-justified with leading zeros

hO# #E fixed %09.2f
left-justified

h—#.#g general %-9.0g

h—# HE fixed %-9.2f

h—#.#e exponential %-10.7e
left-justified with commas

h—#.#gc general %-9.0gc

%—#.#fc fixed %-9.2fc

You may substitute comma (,) for period (.) in any
of the above formats to make comma the decimal point. In
%9,2fc, 1000.03 is 1.000,03. Or you can set dp comma.

format — Set variables’ output format 239

date % fint Description Example

right-justified
%tc date/time %tc
%tC date/time %tC
%td date %td
yAR week %tw
%tm month %tm
htq quarter htq
%th half-year %th
ity year hty
wtg generic yAT:S

left-justified
%-tc date/time %-tc
%-tC date/time %-tC
%-td date %-td
etc.

There are many variations allowed. See [D] datetime display formats.

business calendar % fint Description Example
%tbcalname a business %tbsimple
[:datetime-speciﬁers] calendar defined in

calname . stbcal

See [D] datetime business calendars.

string % fint Description Example
right-justified

Wits string %15s
left-justified

h—#s string %-20s
centered

Y] string %~12s

The centered format is for use with display only.

Option

permanently specifies that, in addition to making the change right now, the dp setting be remembered
and become the default setting when you invoke Stata.

240 format — Set variables’ output format

Remarks and examples

Remarks are presented under the following headings:

Setting formats
Setting European formats
Details of formats

The
The
The
The
The
The
The
The
The
The

%t format

%fc format

%g format

%gc format

%e ftormat

%21x format

%16H and %16L formats
%8H and %8L formats
%t format

%s format

Other effects of formats
Displaying current formats

Setting formats

See [U] 12.5 Formats: Controlling how data are displayed for an explanation of 7% fmt. To review:
Stata’s three numeric formats are denoted by a leading percent sign, %, followed by the string w.d
(or w,d for European format), where w and d stand for two integers. The first integer, w, specifies
the width of the format. The second integer, d, specifies the number of digits that are to follow the
decimal point; d must be less than w. Finally, a character denoting the format type (e, f, or g) is
appended. For example, %9.2f specifies the £ format that is nine characters wide and has two digits
following the decimal point. For f and g, a ¢ may also be suffixed to indicate comma formats. Other
“numeric” formats known collectively as the %t formats are used to display dates and times; see
[D] datetime display formats. String formats are denoted by %ws, where w indicates the width of

the format.

> Example 1

We have census data by region and state on median age and population in 1980.

. use http://www.stata-press.com/data/r14/census10
(1980 Census data by state)

. describe

Contains data from http://www.stata-press.com/data/r14/census10.dta

obs: 50 1980 Census data by state
vars: 4 9 Apr 2014 08:05

size: 1,200

storage display value

variable name type format label variable label
state strid %l4s State
region int %8.0g cenreg Census region
pop long %11.0g Population
medage float %9.0g Median age

Sorted by:

format — Set variables’ output format 241

. list in 1/8

state region pop medage
1. Alabama South 3893888 29.3
2. Alaska West 401851 26.1
3. Arizona West 2718215 29.2
4. Arkansas South 2286435 30.6
5. California West 23667902 29.9
6. Colorado West 2889964 28.6
7. Connecticut NE 3107576 32
8. Delaware South 594338 29.8

The state variable has a display format of %14s. To left-align the state data, we type

. format state %-14s

. list in 1/8

state region pop medage
1. Alabama South 3893888 29.3
2. Alaska West 401851 26.1
3. Arizona West 2718215 29.2
4. Arkansas South 2286435 30.6
5. California West 23667902 29.9
6. Colorado West 2889964 28.6
7. Connecticut NE 3107576 32
8. Delaware South 594338 29.8

Although it seems like region is a string variable, it is really a numeric variable with an attached
value label. You do the same thing to left-align a numeric variable as you do a string variable: insert
a negative sign.

. format region %-8.0g

. list in 1/8

state region pop medage
1. Alabama South 3893888 29.3
2. Alaska West 401851 26.1
3. Arizona West 2718215 29.2
4. Arkansas South 2286435 30.6
5. California West 23667902 29.9
6. Colorado West 2889964 28.6
T. Connecticut NE 3107576 32
8. Delaware South 594338 29.8

242 format — Set variables’ output format

The pop variable would probably be easier to read if we inserted commas by appending a ‘c’:

. format pop %11.0gc

. list in 1/8

state region pop medage
1. Alabama South 3,893,888 29.3
2. Alaska West 401,851 26.1
3. Arizona West 2,718,215 29.2
4. Arkansas South 2,286,435 30.6
5. California West 23667902 29.9
6. Colorado West 2,889,964 28.6
7. Connecticut NE 3,107,576 32
8. Delaware South 594,338 29.8

Look at the value of pop for observation 5. There are no commas. This number was too large for
Stata to insert commas and still respect the current width of 11. Let’s try again:

. format pop %12.0gc

. list in 1/8

state region pop medage
1. Alabama South 3,893,888 29.3
2. Alaska West 401,851 26.1
3. Arizona West 2,718,215 29.2
4. Arkansas South 2,286,435 30.6
5. California West 23,667,902 29.9
6. Colorado West 2,889,964 28.6
7. Connecticut NE 3,107,576 32
8. Delaware South 594,338 29.8

Finally, medage would look better if the decimal points were vertically aligned.

. format medage %8.1f

. list in 1/8

state region pop medage
1. Alabama South 3,893,888 29.3
2. Alaska West 401,851 26.1
3. Arizona West 2,718,215 29.2
4. Arkansas South 2,286,435 30.6
5. California West 23,667,902 29.9
6. Colorado West 2,889,964 28.6
7. Connecticut NE 3,107,576 32.0
8. Delaware South 594,338 29.8

Display formats are permanently attached to variables by the format command. If we save the
data, the next time we use it, state will still be formatted as %-14s, region will still be formatted
as %-8.0g, etc.

d

format — Set variables’ output format 243

> Example 2

Suppose that we have an employee identification variable, empid, and that we want to retain the
leading zeros when we list our data. format has a leading-zero option that allows this.

. use http://www.stata-press.com/data/r14/fmtxmpl

. describe empid

storage display value

variable name type format label variable label
empid float %9.0g
. list empid in 83/87

empid
83. 98
84. 99
85. 100
86. 101
87. 102

. format empid %05.0f
. list empid in 83/87

empid
83. 00098
84. 00099
85. 00100
86. 00101
87. 00102

Q Technical note

The syntax of the format command allows a varlist and not just one variable name. Thus you
can attach the %9.2f format to the variables myvar, thisvar, and thatvar by typing

. format myvar thisvar thatvar %9.2f

> Example 3

We have employee data that includes hiredate and login and logout times. hiredate is stored
as a float, but we were careful to store login and logout as doubles. We need to attach a date
format to these three variables.

. use http://www.stata-press.com/data/ri14/fmtxmpl2
. format hiredate login logout

variable name display format

hiredate %9.0g
login %10.0g
logout %10.0g

244 format — Set variables’ output format

. format login logout %tcDDmonCCYY_HH:MM:SS.ss
. list login logout in 1/5
login logout
08nov2006 08:16:42.30 08nov2006 05:32:23.53
08nov2006 08:07:20.53 08nov2006 05:57:13.40
08nov2006 08:10:29.48 08nov2006 06:17:07.51
08nov2006 08:30:02.19 08nov2006 05:42:23.17
08nov2006 08:29:43.25 08nov2006 05:29:39.48

g WN -

. format hiredate %td
. list hiredate in 1/5

hiredate

24jan1986
10mar1994
29sep2006
14apr2006
03dec1999

g wWwN e

We remember that the project manager requested that hire dates be presented in the same form as

they were previously.

. format hiredate %tdDD/NN/CCYY

. list hiredate in 1/5

hiredate

24/01/1986
10/03/1994
29/09/2006
14/04/2006
03/12/1999

O WN -

Setting European formats

Do you prefer that one and one half be written as 1,5 and that one thousand one and a half be
written as 1.001,5? Stata will present numbers in that format if, when you set the format, you specify

[

,” rather than

[}

as follows:

. use http://www.stata-press.com/data/r14/census10
(1980 Census data by state)

. format pop %12,0gc
. format medage %9,2f

format — Set variables’ output format 245

. list in 1/8

state region pop medage
1. Alabama South 3.893.888 29,30
2. Alaska West 401.851 26,10
3. Arizona West 2.718.215 29,20
4. Arkansas South 2.286.435 30,60
5. California West 23.667.902 29,90
6. Colorado West 2.889.964 28,60
7. Connecticut NE 3.107.576 32,00
8. Delaware South 594 .338 29,80

You can also leave the formats just as they were and instead type set dp comma. That tells Stata to
interpret all formats as if you had typed the comma instead of the period:

. format pop %12.0gc

. format medage %9.

. set dp comma
list in 1/8

2f

(same output appears as above)

(put the formats back as they were)

(tell Stata to use European format)

set dp comma affects all Stata output, so if you run a regression, display summary statistics, or make
a table, commas will be used instead of periods in the output:

. tabulate region [fw=popl]

Census
region Freq. Percent Cum.
NE 49135283 21,75 21,75
N Cntrl 58865670 26,06 47,81
South 74734029 33,08 80,89
West 43172490 19,11 100,00
Total 225907472 100,00

You can return to using periods by typing

. set dp period

Setting a variable’s display format to European affects how the variable’s values are displayed by
list and in a few other places. Setting dp to comma affects every bit of Stata.

Also, set dp comma affects only how Stata displays output, not how it gets input. When you need
to type one and a half, you must type 1.5 regardless of context.

Q Technical note

set dp comma makes drastic changes inside Stata, and we mention this because some older, user-
written programs may not be able to deal with those changes. If you are using an older, user-written
program, you might set dp comma only to find that the program does not work and instead presents

some sort of syntax error.

If, using any program, you get an unanticipated error, try setting dp back to period.

Even with set dp comma, you might still see some output with the decimal symbol shown as a
period rather than a comma. There are two places in Stata where Stata ignores set dp comma because
the features are generally used to produce what will be treated as input, and set dp comma does not
affect how Stata inputs numbers. First,

246 format — Set variables’ output format

local x = sqrt(2)

stores the string “1.414213562373095” in x and not “1,414213562373095”, so if some program
were to display ‘x’ as a string in the output, the period would be displayed. Most programs, however,
would use ‘x’ in subsequent calculations or, at the least, when the time came to display what was
in ‘x’, would display it as a number. They would code

3

display ... ‘x’ ...

and not
display ... "‘x’" ...

so the output would be
. 1,4142135 ...

The other place where Stata ignores set dp comma is the string() function. If you type
. generate res = string(numvar)
new variable res will contain the string representation of numeric variable numvar, with the decimal

symbol being a period, even if you have previously set dp comma. Of course, if you explicitly ask
that string() use European format,

. generate res = string(numvar,"%9,0g")

then string() honors your request; string() merely ignores the global set dp comma.

Details of formats

The %f format

In %w.df, w is the total output width, including sign and decimal point, and d is the number of
digits to appear to the right of the decimal point. The result is right-justified.

The number 5.139 in %12.2f format displays as

————pe———{ ——

When d = 0, the decimal point is not displayed. The number 5.14 in %12.0£f format displays as
————te—] ——
5

%-w.df works the same way, except that the output is left-justified in the field. The number 5.139
in %-12.2f displays as

-
5.14

The %fc format

%w.dfc works like %w.df except that commas are inserted to make larger numbers more readable.
w records the total width of the result, including commas.

The number 5.139 in %12.2fc format displays as

PR -
5.14

format — Set variables’ output format 247

The number 5203.139 in %12.2fc format displays as

————te———{ -
5,203.14

As with %f, if d = 0, the decimal point is not displayed. The number 5203.139 in %12.0£fc format
displays as

As with %f, a minus sign may be inserted to left justify the output. The number 5203.139 in
%-12.0fc format displays as

The %g format

In %w.dg, w is the overall width, and d is usually specified as 0, which leaves up to the format
the number of digits to be displayed to the right of the decimal point. If d # 0 is specified, then not
more than d digits will be displayed. As with %f, a minus sign may be inserted to left-justify results.

%g differs from %f in that 1) it decides how many digits to display to the right of the decimal
point, and 2) it will switch to a %e format if the number is too large or too small.

The number 5.139 in %12.0g format displays as

The number 5231371222.139 in %12.0g format displays as

————ee]
5231371222

The number 52313712223.139 displays as

——— -
5.23137e+10

The number 0.0000029394 displays as

————pe———{ ——
2.93940e-06

The %gc format

%w.dgc is %w.dg with commas. It works in the same way as the %g and %fc formats.

The %e format

%w.de displays numeric values in exponential format. w records the width of the format. d records
the number of digits to be shown after the decimal place. w should be greater than or equal to d+7
or, if 3-digit exponents are expected, d+-8.

The number 5.139 in %12.4e format is

PR -
5.1390e+00

248 format — Set variables’ output format

The number 5.139 x 10%2° is

-
5.1390e+220

The %21x format

The %21x format is for those, typically programmers, who wish to analyze routines for numerical
roundoff error. There is no better way to look at numbers than how the computer actually records
them.

The number 5.139 in %21x format is

+ 1 . 2-
+1.48e5604189375X+002

The number 5.125 is

+ 1 + 2-
+1.4800000000000X+002

Reported is a signed, base-16 number with base-16 point, the letter X, and a signed, 3-digit base-16
integer. Call the two numbers f and e. The interpretation is f x 2°.

The %16H and %16L formats

The %16H and %16L formats show the value in the IEEE floating point, double-precision form.
%16H shows the value in most-significant-byte-first (hilo) form. %16L shows the number in least-
significant-byte-first (lohi) form.

The number 5.139 in %16H is

P -
40148e5604189375

The number 5.139 in %16L is

e e R
75931804568e1440

The format is sometimes used by programmers who are simultaneously studying a hexadecimal
dump of a binary file.

The %8H and %8L formats
%8H and %8L are similar to %16H and %16L but show the number in IEEE single-precision form.
The number 5.139 in %8H is

e
40a472b0

The number 5.139 in %8L is

e
b072a440

The %t format

The %t format displays numerical variables as dates and times. See [D] datetime display formats.

format — Set variables’ output format 249

The %s format

The %ws format displays a string in a right-justified field of width w. %-ws displays the string
left-justified.

“Mary Smith” in %16s format is

P

Mary Smith

“Mary Smith” in %-16s format is

PRI, P

Mary Smith
Also, in some contexts, particularly display (see [P] display), %~ws is allowed, which centers

the string. “Mary Smith” in %-~16s format is

R I
Mary Smith

Other effects of formats
You have data on the age of employees, and you type summarize age to obtain the mean and
standard deviation. By default, Stata uses its default g format to provide as much precision as possible.

. use http://www.stata-press.com/data/r14/fmtxmpl
. summarize age
Variable | Obs Mean Std. Dev. Min Max

age | 204 30.18627 10.38067 18 66
If you attach a %9.2f format to the variable and specify the format option, Stata uses that
specification to format the results:

. format age %9.2f
. summarize age, format

Variable | Obs Mean Std. Dev. Min Max

age | 204 30.19 10.38 18.00 66.00

Displaying current formats

format varlist is not often used to display the formats associated with variables because using
describe (see [D] describe) is easier and provides more information. The exceptions are date
variables. Unless you use the default %tc, %tC, ... formats (and most people do), the format specifier
itself can become very long, such as

. format admittime %tcDDmonCCYY_HH:MM:SS.sss
Such formats are too long for describe to display, so it gives up. In such cases, you can use
format to display the format:

. format admittime

variable name display format

admittime %tcDDmonCCYY_HH:MM:SS.sss

Type format * to see the formats for all the variables.

250 format — Set variables’ output format

References

Cox, N. J. 2011. Speaking Stata: MMXI and all that: Handling Roman numerals within Stata. Stata Journal 11:
126-142.

Gould, W. W. 2011a. How to read the %21x format. The Stata Blog: Not Elsewhere Classified.
http://blog.stata.com/2011/02/02/how-to-read-the-percent-21x-format/.

——. 2011b. How to read the %21x format, part 2. The Stata Blog: Not Elsewhere Classified.
http://blog.stata.com/2011/02/10/how-to-read-the-percent-2 1 x-format-part-2/.

Linhart, J. M. 2008. Mata Matters: Overflow, underflow and the IEEE floating-point format. Stata Journal 8: 255-268.

Also see
[D] datetime business calendars — Business calendars
[D] datetime display formats — Display formats for dates and times
[D] list — List values of variables
[D] varmanage — Manage variable labels, formats, and other properties
[P] display — Display strings and values of scalar expressions
[U] 12.5 Formats: Controlling how data are displayed
[U] 12.6 Dataset, variable, and value labels

http://www.stata-journal.com/sjpdf.html?articlenum=dm0054
http://blog.stata.com/2011/02/02/how-to-read-the-percent-21x-format/
http://blog.stata.com/2011/02/02/how-to-read-the-percent-21x-format/
http://blog.stata.com/2011/02/10/how-to-read-the-percent-21x-format-part-2/
http://blog.stata.com/2011/02/10/how-to-read-the-percent-21x-format-part-2/
http://www.stata-journal.com/sjpdf.html?articlenum=pr0038

Title

generate — Create or change contents of variable

Description Quick start Menu Syntax
Options Remarks and examples Methods and formulas References
Also see

Description

generate creates a new variable. The values of the variable are specified by =exp.

If no type is specified, the new variable type is determined by the type of result returned by =exp.
A float variable (or a double, according to set type) is created if the result is numeric, and a
string variable is created if the result is a string. In the latter case, if the string variable contains values
greater than 2,045 characters or contains values with a binary 0 (\0), a strL variable is created.
Otherwise, a str# variable is created, where # is the smallest string that will hold the result.

If a type is specified, the result returned by =exp must be a string or numeric according to whether
type is string or numeric. If str is specified, a strL or a str# variable is created using the same
rules as above.

See [D] egen for extensions to generate.

replace changes the contents of an existing variable. Because replace alters data, the command
cannot be abbreviated.

set type specifies the default storage type assigned to new variables (such as those created by
generate) when the storage type is not explicitly specified.

Quick start

Create numeric variable newvl equal to v1 + 2
generate newvl = vl + 2

As above, but use type byte and label the values of newvl with value label mylabel
generate byte newvl:mylabel = vl1 + 2

String variable newv2 equal to “my text”
generate newv2 = "my text"

Variable newv3 equal to the observation number
generate newv3 = _n

Replace newv3 with observation number within each value of catvar
by catvar: replace newv3 = _n

Binary indicator for first observation within each value of catvar after sorting on v2
bysort catvar (v2): generate byte first = _n==

As above, but for last observation
bysort catvar (v2): generate byte last = _n==_

Combined datetime variable newv4 from %td formatted date and %tc formatted time
generate double newv4 = cofd(date) + time

251

252 generate — Create or change contents of variable

Menu
generate

Data > Create or change data > Create new variable

replace

Data > Create or change data > Change contents of variable

Syntax
Create new variable
generate [type} newvar[:lblname] =exp [zf] [m]

[, before(varname) |gfter(vamame)]

Replace contents of existing variable

replace oldvar =exp [lf} [zn] [, ﬂromote}

Specity default storage type assigned to new variables

set type { float | double } [, permanently]

where fype is one of byte | int | long | float | double | str | strl | str2 | ...|
str2045.

See Description below for an explanation of str. For the other types, see [U] 12 Data.

by is allowed with generate and replace; see [D] by.

Options

before(varname) or after(varname) may be used with generate to place the newly generated
variable in a specific position within the dataset. These options are primarily used by the Data
Editor and are of limited use in other contexts. A more popular alternative for most users is order
(see [D] order).

nopromote prevents replace from promoting the variable type to accommodate the change. For
instance, consider a variable stored as an integer type (byte, int, or long), and assume that
you replace some values with nonintegers. By default, replace changes the variable type to a
floating point (float or double) and thus correctly stores the changed values. Similarly, replace
promotes byte and int variables to longer integers (int and long) if the replacement value is an
integer but is too large in absolute value for the current storage type. replace promotes strings
to longer strings. nopromote prevents replace from doing this; instead, the replacement values
are truncated to fit into the current storage type.

permanently specifies that, in addition to making the change right now, the new limit be remembered
and become the default setting when you invoke Stata.

generate — Create or change contents of variable 253

Remarks and examples

Remarks are presented under the following headings:

generate and replace
set type

generate and replace

generate and replace are used to create new variables and to modify the contents of existing
variables, respectively. Although the commands do the same thing, they have different names so that
you do not accidentally replace values in your data. Detailed descriptions of expressions are given in
[U] 13 Functions and expressions.

Also see [D] edit.

> Example 1

We have a dataset containing the variable age2, which we have previously defined as age~2 (that
is, age?). We have changed some of the age data and now want to correct age2 to reflect the new
values:

. use http://www.stata-press.com/data/r14/genxmpll
(Wages of women)

. generate age2=age”2
age2 already defined
r(110);

When we attempt to re-generate age2, Stata refuses, telling us that age2 is already defined. We
could drop age2 and then re-generate it, or we could use the replace command:

. replace age2=age”2
(204 real changes made)

When we use replace, we are informed of the number of actual changes made to the dataset.

4

You can explicitly specify the storage type of the new variable being created by putting the fype,
such as byte, int, long, float, double, or str8, in front of the variable name. For example,
you could type generate double revenue = qty * price. Not specifying a type is equivalent
to specifying float if the variable is numeric, or, more correctly, it is equivalent to specifying the
default type set by the set type command; see below. If the variable is alphanumeric, not specifying
a type is equivalent to specifying str#, where # is the length of the largest string in the variable.

You may also specify a value label to be associated with the new variable by including ““: [blname”
after the variable name. This is seldom done because you can always associate the value label later
by using the label values command; see [U] 12.6.3 Value labels.

> Example 2

Among the variables in our dataset is name, which contains the first and last name of each person.
We wish to create a new variable called lastname, which we will then use to sort the data. name is
a string variable.

254 generate — Create or change contents of variable

. use http://www.stata-press.com/data/r14/genxmpl2, clear

. list name

name

Johanna Roman
Dawn Mikulin
Malinda Vela

Kevin Crow
Zachary Bimslager

g WN -

. generate lastname=word(name,2)
. describe

Contains data from http://www.stata-press.com/data/r14/genxmpl2.dta

obs: 5
vars: 2 18 Jan 2014 12:24
size: 130
storage display value
variable name type format label variable label
name stri7 %17s
lastname str9 %9s
Sorted by:

Note: Dataset has changed since last saved.

Stata is smart. Even though we did not specify the storage type in our generate statement, Stata
knew to create a str9 lastname variable, because the longest last name is Bimslager, which has
nine characters.

N

> Example 3

We wish to create a new variable, age2, that represents the variable age squared. We realize that
because age is an integer, age2 will also be an integer and will certainly be less than 32,740. We
therefore decide to store age2 as an int to conserve memory:

. use http://www.stata-press.com/data/r14/genxmpl3, clear

. generate int age2=age~”2
(9 missing values generated)

Preceding age2 with int told Stata that the variable was to be stored as an int. After creating
the new variable, Stata informed us that nine missing values were generated. generate informs us
whenever it produces missing values.

N

See [U] 13 Functions and expressions and [U] 25 Working with categorical data and factor
variables for more information and examples. Also see [D] recode for a convenient way to recode
categorical variables.

generate — Create or change contents of variable 255

Q Technical note

If you specify the if or in qualifier, the =exp is evaluated only for those observations that meet
the specified condition or are in the specified range (or both, if both if and in are specified). The
other observations of the new variable are set to missing:

. use http://www.stata-press.com/data/r14/genxmpl3, clear
. generate int age2=age”2 if age>30
(290 missing values generated) O

> Example 4

replace can be used to change just one value, as well as to make sweeping changes to our data.
For instance, say that we enter data on the first five odd and even positive integers and then discover
that we made a mistake:

. use http://www.stata-press.com/data/r14/genxmpl4, clear
. list

1 1 2
2 3 4
3 -8 6
4 7 8
5 9 10

The third observation is wrong; the value of odd should be 5, not —8. We can use replace to
correct the mistake:

. replace odd=5 in 3
(1 real change made)

We could also have corrected the mistake by typing replace odd=5 if odd==-8.

set type

When you create a new numeric variable and do not specify the storage type for it, say, by typing
generate y=x+2, the new variable is made a float if you have not previously issued the set type
command. If earlier in your session you typed set type double, the new numeric variable would
be made a double.

Methods and formulas

You can do anything with replace that you can do with generate. The only difference between
the commands is that replace requires that the variable already exist, whereas generate requires
that the variable be new. In fact, inside Stata, generate and replace have the same code. Because
Stata is an interactive system, we force a distinction between replacing existing values and generating
new ones so that you do not accidentally replace valuable data while thinking that you are creating
a new piece of information.

256 generate — Create or change contents of variable

References

Gleason, J. R. 1997a. dm50: Defining variables and recording their definitions. Stata Technical Bulletin 40: 9-10.
Reprinted in Stata Technical Bulletin Reprints, vol. 7, pp. 48-49. College Station, TX: Stata Press.

——. 1997b. dm50.1: Update to defv. Stata Technical Bulletin 51: 2. Reprinted in Stata Technical Bulletin Reprints,
vol. 9, pp. 14-15. College Station, TX: Stata Press.

Newson, R. B. 2004. Stata tip 13: generate and replace use the current sort order. Stata Journal 4: 484-485.
Royston, P. 2013. marginscontplot: Plotting the marginal effects of continuous predictors. Stata Journal 13: 510-527.

Weesie, J. 1997. dm43: Automatic recording of definitions. Stata Technical Bulletin 35: 6-7. Reprinted in Stata
Technical Bulletin Reprints, vol. 6, pp. 18-20. College Station, TX: Stata Press.

Also see
[D] compress — Compress data in memory
[D] corr2data — Create dataset with specified correlation structure
[D] drawnorm — Draw sample from multivariate normal distribution
[D] edit — Browse or edit data with Data Editor
[D] egen — Extensions to generate
[D] encode — Encode string into numeric and vice versa
[D] label — Manipulate labels
[D] recode — Recode categorical variables
[D] rename — Rename variable
[U] 12 Data

[U] 13 Functions and expressions

http://www.stata.com/products/stb/journals/stb40.pdf
http://www.stata.com/products/stb/journals/stb51.pdf
http://www.stata-journal.com/sjpdf.html?articlenum=dm0008
http://www.stata-journal.com/article.html?article=gr0056
http://www.stata.com/products/stb/journals/stb35.pdf

Title

gsort — Ascending and descending sort

Description Quick start Menu Syntax
Options Remarks and examples Also see

Description

gsort arranges observations to be in ascending or descending order of the specified variables and
so differs from sort in that sort produces ascending-order arrangements only; see [D] sort.

Each varname can be numeric or a string.

The observations are placed in ascending order of varname if + or nothing is typed in front of the
name and are placed in descending order if - is typed.

Quick start

Sort dataset in memory by ascending values of v1, equivalent to sort
gsort vl

Sort dataset in memory by descending values of v1
gsort -vi

Sort dataset by ascending values of v1 and descending values of v2
gsort vl1 -v2

Create newv for use in subsequent by operations
gsort vl -v2, generate(newv)

Place missing values of descending-order v2 at the top of the dataset instead of the end
gsort vl -v2, mfirst

Menu
Data > Sort

257

258 gsort — Ascending and descending sort

Syntax
gsort [+|—] varname [[+ | —] varname] [, 5enerate(newvar) rgfirst]
Options
generate(newvar) creates newvar containing 1, 2, 3, ... for each group denoted by the ordered

data. This is useful when using the ordering in a subsequent by operation; see [U] 11.5 by varlist:
construct and examples below.

mfirst specifies that missing values be placed first in descending orderings rather than last.

Remarks and examples

gsort is almost a plug-compatible replacement for sort, except that you cannot specify a general
varlist with gsort. For instance, sort alpha-gamma means to sort the data in ascending order of
alpha, within equal values of alpha; sort on the next variable in the dataset (presumably beta),
within equal values of alpha and beta; etc. gsort alpha-gamma would be interpreted as gsort
alpha -gamma, meaning to sort the data in ascending order of alpha and, within equal values of
alpha, in descending order of gamma.

> Example 1
The difference in varlist interpretation aside, gsort can be used in place of sort. To list the 10
lowest-priced cars in the data, we might type
. use http://www.stata-press.com/data/r14/auto
. gsort price
. list make price in 1/10
or, if we prefer,
. gsort +price
. list make price in 1/10
To list the 10 highest-priced cars in the data, we could type
. gsort -price
. list make price in 1/10
gsort can also be used with string variables. To list all the makes in reverse alphabetical order,
we might type

. gsort -make

. list make

> Example 2
gsort can be used with multiple variables. Given a dataset on hospital patients with multiple
observations per patient, typing

. use http://www.stata-press.com/data/r14/bp3
. gsort id time

. list id time bp

gsort — Ascending and descending sort 259

lists each patient’s blood pressures in the order the measurements were taken. If we typed
. gsort id -time

. list id time bp

then each patient’s blood pressures would be listed in reverse time order.

Q Technical note
Say that we wished to attach to each patient’s records the lowest and highest blood pressures
observed during the hospital stay. The easier way to achieve this result is with egen’s min() and
max () functions:
. egen lo_bp = min(bp), by(id)
. egen hi_bp = max(bp), by(id)

See [D] egen. Here is how we could do it with gsort:

. use http://www.stata-press.com/data/r14/bp3, clear
. gsort id bp

. by id: generate lo_bp = bp[1]

. gsort id -bp

. by id: generate hi_bp = bp[1]

. list, sepby(id)

This works, even in the presence of missing values of bp, because such missing values are placed
last within arrangements, regardless of the direction of the sort.
a

Q Technical note

Assume that we have a dataset containing x for which we wish to obtain the forward and reverse
cumulatives. The forward cumulative is defined as F'(X) = the fraction of observations such that
x < X. Again let’s ignore the easier way to obtain the forward cumulative, which would be to use
Stata’s cumul command,

. set obs 100

. generate x = rnormal()
. cumul x, gen(cum)

(see [R] cumul). Eschewing cumul, we could type

. sort x
. by x: generate cum = _N if _n==1
. replace cum = sum(cum)

. replace cum = cum/cum[_N]

That is, we first place the data in ascending order of x; we used sort but could have used gsort.
Next, for each observed value of x, we generated cum containing the number of observations that
take on that value (you can think of this as the discrete density). We summed the density, obtaining
the distribution, and finally normalized it to sum to 1.

260 gsort — Ascending and descending sort

The reverse cumulative G(X) is defined as the fraction of data such that x > X. To obtain this,
we could try simply reversing the sort:
. gsort -x
. by x: generate rcum = _N if _n==1
. replace rcum = sum(rcum)

. replace rcum = rcum/rcum[_N]

This would work, except for one detail: Stata will complain that the data are not sorted in the second
line. Stata complains because it does not understand descending sorts (gsort is an ado-file). To
remedy this problem, gsort’s generate() option will create a new grouping variable that is in
ascending order (thus satisfying Stata’s narrow definition) and that is, in terms of the groups it defines,
identical to that of the true sort variables:

. gsort -x, gen(revx)
. by revx: generate rcum = _N if _n==
. replace rcum = sum(rcum)

. replace rcum = rcum/rcum[_N]

Also see
[D] sort — Sort data

Title

hexdump — Display hexadecimal report on file

Description Syntax Options
Remarks and examples Stored results Also see

Description

hexdump displays a hexadecimal dump of a file or, optionally, a report analyzing the dump.

Syntax
hexdump filename [s options]
options Description
analyze display a report on the dump rather than the dump itself
tabulate display a full tabulation of the ASCII and extended ASCII characters in the
analyze report
noextended do not display printable extended ASCII characters
results store results containing the frequency with which each character code was
observed; programmer’s option
from(#) dump or analyze first byte of the file; default is to start at first byte, from(0)
to(#) dump or analyze last byte of the file; default is to continue to the end of the file
Options

analyze specifies that a report on the dump, rather than the dump itself, be presented.

tabulate specifies in the analyze report that a full tabulation of the ASCII and extended ASCII
characters also be presented.

noextended specifies that hexdump not display printable extended ASCII characters, characters in
the range 161-254 or, equivalently, Oxal—Oxfe. (hexdump does not display characters 128—160

and 255.)

results is for programmers. It specifies that, in addition to other stored results, hexdump store
r(c0), r(cl), ..., r(c255), containing the frequency with which each character code was
observed.

from(#) specifies the first byte of the file to be dumped or analyzed. The default is to start at the
first byte of the file, from(0).

to(#) specifies the last byte of the file to be dumped or analyzed. The default is to continue to the
end of the file.

261

262 hexdump — Display hexadecimal report on file

Remarks and examples

hexdump is useful when you are having difficulty reading a file with infile, infix, or import
delimited. Sometimes, the reason for the difficulty is that the file does not contain what you think
it contains, or that it does contain the format you have been told, and looking at the file in text mode
is either not possible or not revealing enough.

Pretend that we have the file myfile.raw containing

Datsun 210 4589 35 5 1
VW Scirocco 6850 25 4 1
Merc. Bobcat 3829 22 4 O
Buick Regal 5189 20 3 O
VW Diesel 5397 41 5 1
Pont. Phoenix 4424 19 . O
Merc. Zephyr 3291 20 3 0
0lds Starfire 4195 24 1 O
BMW 320i 9735 25 4 1

We will use myfile.raw with hexdump to produce output that looks like the following:

. hexdump myfile.raw

character
hex representation representation
address 01 23 45 67 89 ab cd ef 0123456789abcdef

0 | 4461 7473 756e 2032 3130 2020 2020 2034 | Datsun 210 4
10 | 3538 3920 2033 3520 2035 2020 310a 5657 | 589 35 5 1.VW
20 | 2053 6369 726f 6363 6£20 2020 2036 3835 Scirocco 685
30 | 3020 2032 3520 2034 2020 310a 4d65 7263 | 0 25 4 1.Merc

40 | 2e20 426f 6263 6174 2020 2033 3832 3920 . Bobcat 3829
50 | 2032 3220 2034 2020 300a 4275 6963 6b20 22 4 0.Buick
60 | 5265 6761 6c20 2020 2035 3138 3920 2032 | Regal 5189 2
70 | 3020 2033 2020 300a 5657 2044 6965 7365 [0 3 0.VW Diese

80 | 6c20 2020 2020 2035 3339 3720 2034 3120 1 5397 41
90 2035 2020 310a 506f 6e74 2e20 5068 6£f65 5 1.Pont. Phoe
a0 | 6e69 7820 2034 3432 3420 2031 3920 202e | nix 4424 19

b0 2020 300a 4d65 7263 2e20 5a65 7068 7972 0.Merc. Zephyr

cO | 2020 2033 3239 3120 2032 3020 2033 2020 3291 20 3
d0 | 300a 4f6c 6473 2053 7461 7266 6972 6520 | 0.0lds Starfire
e0 | 2034 3139 3520 2032 3420 2031 2020 300a 4195 24 1 0.
£0 | 424d 5720 3332 3069 2020 2020 2020 2039 | BMW 320i 9
100 | 3733 3520 2032 3520 2034 2020 310a 735 26 4 1.

hexdump — Display hexadecimal report on file 263

hexdump can also produce output that looks like the following:

. hexdump myfile.raw, analyze

Line-end characters Line length (tab=1)
\r\n (Windows) 0 minimum 29
\r by itself (Mac) 0 maximum 29
\n by itself (Unix) 9

Space/separator characters Number of lines 9
[blank] 99 EOL at EOF? yes
[tab] 0
[comma] (,) 0 Length of first 5 lines

Control characters Line 1 29
binary O 0 Line 2 29
CTL excl. \r, \n, \t 0 Line 3 29
DEL 0 Line 4 29
Extended (128-159,255) 0 Line 5 29

ASCII printable
A-Z 20
a-z 61 File format ASCII
0-9 7
Special (!@#$ etc.) 4
Extended (160-254) 0

Total 270

Observed were:
\n blank . 01 23456789BDMOPRSVWZabcdefghikl
noprstuxy

Of the two forms of output, the second is often the more useful because it summarizes the file, and
the length of the summary is not a function of the length of the file. Here is the summary for a file
that is just over 4 MB long:

. hexdump bigfile.raw, analyze

Line-end characters Line length (tab=1)
\r\n (Windows) 147,456 minimum 29
\r by itself (Mac) 0 maximum 30
\n by itself (Unix) 2

Space/separator characters Number of lines 147,458
[blank] 1,622,039 EOL at EQF? yes
[tab] 0
[comma] (,) 0 Length of first 5 lines

Control characters Line 1 30
binary O 0 Line 2 30
CTL excl. \r, \n, \t 0 Line 3 30
DEL 0 Line 4 30
Extended (128-159,255) 0 Line 5 30

ASCII printable
A-Z 327,684
a-z 999,436 File format ASCII
0-9 1,261,587
Special (!@#$ etc.) 65,536
Extended (160-254) 0

Total 4,571,196

Observed were:
\n \r blank . 012345678 9BDMOPRSVWZabcdefghi
klnoprstuxy

264 hexdump — Display hexadecimal report on file

Here is the same file but with a subtle problem:

. hexdump badfile.raw, analyze

Line-end characters Line length (tab=1)
\r\n (Windows) 147,456 minimum 30
\r by itself (Mac) 0 maximum 90
\n by itself (Unix) 0

Space/separator characters Number of lines 147,456
[blank] 1,622,016 EOL at EOF? yes
[tab] 0
[comma] (,) 0 Length of first 5 lines

Control characters Line 1 30
binary 0 8 Line 2 30
CTL excl. \r, \n, \t 4 Line 3 30
DEL 0 Line 4 30
Extended (128-159,255) 24 Line 5 30

ASCII printable
A-Z 327,683
a-z 999,426 File format BINARY
0-9 1,261,568
Special (!@#$ etc.) 65,539
Extended (160-254) 16

Total 4,571,196

Observed were:
\0O °C "D "G\n\r 'Ublank & . 01 23456789BDEMOPRSUVW
Zabcdefghiklnoprstuvzxyl}~EAECETIEWME'P
€ é 6 255
In the above, the line length varies between 30 and 90 (we were told that each line would be 30
characters long). Also the file contains what hexdump, analyze labeled control characters. Finally,
hexdump, analyze declared the file to be BINARY rather than ASCII.

We created the second file by removing two valid lines from bigfile.raw (60 characters) and
substituting 60 characters of binary junk. We would defy you to find the problem without using
hexdump, analyze. You would succeed, but only after much work. Remember, this file has 147,456
lines, and only two of them are bad. If you print 1,000 lines at random from the file, your chances
of listing the bad part are only 0.013472. To have a 50% chance of finding the bad lines, you would
have to list 52,000 lines, which is to say, review about 945 pages of output. On those 945 pages,
each line would need to be drawn at random. More likely, you would list lines in groups, and that
would greatly reduce your chances of encountering the bad lines.

The situation is not as dire as we make it out to be because, were you to read badfile.raw
by using infile, it would complain, and here it would tell you exactly where it was complaining.
Still, at that point you might wonder whether the problem was with how you were using infile or
with the data. Moreover, our 60 bytes of binary junk experiment corresponds to transmission error.
If the problem were instead that the person who constructed the file constructed two of the lines
differently, infile might not complain, but later you would notice some odd values in your data
(because obviously you would review the summary statistics, right?). Here hexdump, analyze might
be the only way you could prove to yourself and others that the raw data need to be reconstructed.

hexdump — Display hexadecimal report on file 265

Q Technical note

In the full hexadecimal dump,

. hexdump myfile.raw

character

hex representation representation

address 01 23 45 67 89 ab cd e f | 0123456789abcdef
0 | 4461 7473 756e 2032 3130 2020 2020 2034 | Datsun 210 4

10 | 3538 3920 2033 3520 2035 2020 310d 0ab56 | 589 35 5 1..V

20 | 5720 5363 6972 6£63 636f 2020 2020 3638 | W Scirocco 68

30 | 3530 2020 3235 2020 3420 2031 0dOa 4d65 | 50 25 4 1..Me

(output omitted)

addresses (listed on the left) are listed in hexadecimal. Above, 10 means decimal 16, 20 means

decimal 32, and so on. Sixteen characters are listed across each line.

In some other dump, you might see something like

. hexdump myfile2.raw

character
hex representation representation
address 01 23 45 67 89 ab cd ef 0123456789abcdef
0 | 4461 7473 756e 2032 3130 2020 2020 2034 | Datsun 210 4
10 | 3538 3920 2033 3520 2035 2020 3120 2020 589 35 5 1
20 2020 2020 2020 2020 2020 2020 2020 2020
*
160 2020 2020 2020 0ab6 5720 5363 6972 6£63 .VW Sciroc
170 | 636f 2020 2020 3638 3530 2020 3235 2020 co 6850 25
(output omitted)

The * in the address field indicates that

address 160 (decimal 352).

the previous line is repeated until we get to hexadecimal

a

266 hexdump — Display hexadecimal report on file

Stored results

hexdump, analyze and hexdump, results store the following in r():

Scalars
r(Windows) number of \r\n
r(Mac) number of \r by itself
r(Unix) number of \n by itself
r(blank) number of blanks
r(tab) number of tab characters
r (comma) number of comma (,) characters
r(ctl) number of binary Os; A-Z, excluding \r, \n, \t; DELs; and 128-159, 255
r(uc) number of A-Z
r(lc) number of a-z
r(digit) number of 0-9

r(special) number of printable special characters (!@#, etc.)
r(extended) number of printable extended characters (160—254)
r(filesize) number of characters

r(lmin) minimum line length

r(lmax) maximum line length

r (1lnum) number of lines

r(eoleof) 1 if EOL at EOF, 0 otherwise

r(11) length of Ist line

r(12) length of 2nd line

r(13) length of 3rd line

r(14) length of 4th line

r(15) length of 5th line

r(c0) number of binary Os (results only)

r(cl) number of binary 1s ("A) (results only)

r(c2) number of binary 2s ("B) (results only)

r(c255) number of binary 255s (results only)
Macros

r (format) ASCII, EXTENDED ASCII, or BINARY

Also see

[D] filefilter — Convert ASCII or binary patterns in a file
[D] type — Display contents of a file

Title

icd — Introduction to ICD commands

Description Remarks and examples References Also see

Description

This entry provides a brief introduction to the basic concepts of the International Classification of
Diseases (ICD). If you are not familiar with ICD terminology, we recommend that you read this entry
before proceeding to the individual command entries.

This entry also provides an overview of the format of the codes from each coding system that
Stata’s icd commands support. Stata supports ninth revision codes (ICD-9) and tenth revision codes
(ICD-10). For 1CD-9, Stata uses codes from the United States’s Clinical Modification, the ICD-9-CM.
For ICD-10, Stata uses the World Health Organization’s (WHO’s) codes for international morbidity
and mortality reporting. We encourage you to read this entry to ensure that you choose the correct
command and that your data are in the proper format for using the icd suite of commands.

Finally, this entry provides information about using the icd commands with multiple diagnosis or
procedure codes at one time. None of the commands accepts a varlist, so we illustrate methods for
working with multiple codes.

If you are familiar with ICD coding and the icd commands in Stata, you may want to skip to the
command-specific entries for details about syntax and examples.

Commands for ICD-9 codes
icd9 ICD-9-CM diagnostic codes
icd9p ICD-9-CM procedure codes

Commands for ICD-10 codes
icd10 ICD-10 diagnosis codes

Remarks and examples

Remarks are presented under the following headings:

Introduction to ICD coding
Terminology

Diagnosis codes

Procedure codes

Working with multiple codes

Introduction to ICD coding

The icd commands in Stata are implemented for two specific coding systems: ICD-9-CM and ICD-10.

The International Classification of Diseases (ICD) coding system was developed by and is copyrighted
by the World Health Organization (WHO). The ICD coding system is used for standardized mortality
reporting and, by many countries, for reporting of morbidity and coding of diagnoses during health
care encounters. Since 1999, the ICD system has been under its tenth revision, ICD-10 (World Health
Organization 2011). These codes provide information only about diagnoses, not about procedures.

267

268 icd — Introduction to ICD commands

The United States and some other countries have also developed country-specific coding systems
that are extensions of WHO’s system. These systems are used for coding information about health care
encounters. In the United States, the coding system is referred to as the International Classification of
Diseases, Clinical Modification; currently, the U.S. system is based on WHO’s ICD-9 codes (Centers
for Disease Control and Prevention 2013) and so is called ICD-9-CM. These codes are maintained
and distributed by the National Center for Health Statistics (NCHS) at the U.S. Centers for Disease
Control and Prevention (CDC) and by the Centers for Medicare and Medicaid Services (CMS). The
codes may be used to indicate diagnoses or procedures.

Terminology

The icd9 and icd10 entries assume knowledge of common terminology used in the ICD-9-CM
documentation from the NCHS or CMS or in the ICD-10 revision manuals from WHO. The following
brief definitions are provided as a reference.

edition. The ICD-9-CM and ICD-10 each have editions, which represent major periodic changes. ICD-9-
CM is currently in its sixth edition (National Center for Health Statistics 2011). ICD-10 is currently
in its fourth edition (World Health Organization 2011).

version. In the ICD-9-CM coding system, a new version is published each year and is issued with a
sequential version number. The current version is 32.

update. In the ICD-10 coding system, an update may occur each year. The update is not issued with
a number but may be identified by the year in which it occurred.

category code. A category code is the portion of the ICD code that precedes the period. It may
represent a single disease or a group of related diseases or conditions.

valid code. A valid code is one that may be used for reporting in the current version of the ICD-9-CM
or current update to the ICD-10 edition. What constitutes a valid code changes over time.

defined code. A defined code is any code that either is currently valid, was valid at a previous time,
or has meaning as a grouping of codes. See [D] icd9 and [D] icd10 for information about how the
individual commands treat defined codes.

Diagnosis codes

Let’s begin with the diagnostic codes processed by icd9. An ICD-9-CM diagnosis code may have
one of two formats. Most use the format

{o-0:w}{0-9} {o-}[.][0-[0-9]

while E-codes have the format

£{0-9}{0-9} {0-9}[.] -0}

where braces, { }, indicate required items and brackets, [], indicate optional items.

ICD-9-CM codes begin with a digit from 0 to 9, the letter V, or the letter E. E-codes are always
followed by three digits and may have another digit in the fifth place. All other codes are followed
by two digits and may have up to two more digits.

The format of an ICD-10 diagnosis code is

{a-Tv-z}{0-9}{o-9}[.][0-9]

icd — Introduction to ICD commands 269

Each ICD-10 code begins with a single letter followed by two digits. It may have an additional
third digit after the period.

Diagnosis codes must be stored in a string variable (see [D] data types). For codes from either
revision, the period separating the category code from the other digits is treated as implied if it is
not present.

Q Technical note

There are defined five- and six-character ICD-10 codes. However, these codes are not part of the
standard four-character system codified by WHO for international morbidity and mortality reporting
and are not considered valid by icd10. See [D] icd10 for additional details about these codes and
options for using icd10 with them.

Q

Q Technical note

ICD-10 codes U0O0-U49 are reserved for use by WHO for provisional assignment of new diseases.
Codes U50-U99 may be used for research purposes to identify subjects with specific conditions under
study for which there is no defined ICD-10 code (World Health Organization 2011).

If you are working in one of these specialized cases, see Working with U codes under Remarks
and examples in [D] icd10.
a

Procedure codes
The ICD-9-CM coding system also includes procedure codes. The format of ICD-9-CM procedure

codes is
{o-9}{o-9}[.][0o-9[0-9]]

Procedure codes must be stored in a string variable.

Working with multiple codes

Oftentimes, multiple diagnoses or procedures are recorded for each observation. None of the icd
commands accepts a varlist, but you can still work with multiple-diagnosis or multiple-procedure
records. To use the icd commands with more than one diagnosis or procedure variable at a time,
you must either first reshape your data or use a loop; see [D] reshape and [P] forvalues.

2> Example 1: Summarizing information from multiple variables

In example 1 of [D] icd9, we add a variable indicating whether each diagnosis code was invalid
or undefined. Here, we use the same extract from the National Hospital Discharge Survey (NHDS).

It is often more useful to add a single variable that summarizes the results from several diagnosis
or procedure variables. For example, we may wish to add a variable indicating whether a particular
diagnosis code or range of codes appeared in any field. Summary variables can be created from the
results of the check subcommand with option generate() or the generate subcommand with
option range ().

270 icd — Introduction to ICD commands

Suppose that we want a single variable that contains the number of improperly formatted or
undefined codes that each discharge had. To illustrate, we use the nhds2010 dataset, keeping the
variables for discharge identifier (recid), patient age, and patient sex, as well as the three diagnosis
variables. We list the first three observations below.

. use http://www.stata-press.com/data/r14/nhds2010
(Adult same-day discharges, 2010 NHDS)

. keep recid age sex dx1 dx2 dx3

. list in 1/10, noobs

age sex dx1 dx2 dx3 recid
85 Female 4414 99811 14275 84
23 Male 25013 3572 -2506 105
63 Male 51909 1489 -V146 255
43 Female 9678 E8528 8 651
25 Female V271 64421 16564 696
57 Female 5409 V1582 2V106 779
61 Female 27651 V1087 7V436 814
60 Male 9951 462 -2724 826
22 Male 42789 5409 -2780 833
49 Male 5770 29181 14255 863

The data are in wide form, so we specify reshape long with stub dx because our diagnosis codes
are in dx1, dx2, and dx3. The observation identifier, recid, is specified in i(). reshape creates
the new variable dxnum for us.

. reshape long dx, i(recid) j(dxnum)
(note: j =12 3)

Data wide -> long

Number of obs. 2210 -> 6630
Number of variables 6 -> 5
j variable (3 values) -> dxnum

xij variables:
dx1 dx2 dx3 -> dx

The output shows that dxnum has 3 values, so we know that all three diagnosis variables were
recognized by reshape.

icd — Introduction to ICD commands 271

. list in 1/9, sepby(recid) noobs

recid dxnum age sex dx
84 1 85 Female 4414
84 2 85 Female 99811
84 3 85 Female 14275
105 1 23 Male 25013
105 2 23 Male 3572
105 3 23 Male -2506
255 1 63 Male 51909
255 2 63 Male 1489
255 3 63 Male -V146

Notice that our data on recid, age, and sex are retained and duplicated for each new observation.
If you are working with a large dataset, you may wish to drop variables other than a merge key and
your diagnosis (or procedure) variables to conserve space and speed up reshape.

After we reshape, we create prob using icd9 check, an indicator for whether there was a
problem with a given diagnosis code. We then use egen to create anyprob, the total number of codes
that had a problem within each recid. See [D] egen for information about summary functions.

. icd9 check dx, generate(prob)
(dx contains 358 missing values)

dx contains invalid codes:

1. Invalid placement of period 0
2. Too many periods 0
3. Code too short 177
4. Code too long 0
5. 1Invalid 1st char (not 0-9, E, or V) 875
6. Invalid 2nd char (not 0-9) 128
7. Invalid 3rd char (not 0-9) 0
8. 1Invalid 4th char (mot 0-9) 0
9. 1Invalid 5th char (not 0-9) 36
10. Code not defined 778

Total 1,994

. generate anyprob=prob>0
. by recid, sort: egen numprobs=total (anyprob)

. list recid dxnum dx anyprob numprobs in 1/9, sepby(recid) noobs

recid dxnum dx anyprob numprobs
84 1 4414 0 1
84 2 99811 0 1
84 3 14275 1 1
105 1 25013 0 1
105 2 3572 0 1
105 3 -2506 1 1
255 1 51909 0 1
255 2 1489 0 1
255 3 -Vi4é6 1 1

272 icd — Introduction to ICD commands

Before we reshape, we drop prob and anyprob because they are specific to diagnosis variables.
By construction, numprobs is constant within recid, so we do not specify it when we reshape.

. drop prob anyprob

. reshape wide dx, i(recid) j(dxnum)
(note: j =12 3)

Data long -> wide
Number of obs. 6630 -> 2210
Number of variables 6 -> 7
j variable (3 values) dxnum -> (dropped)

xij variables:
dx -> dx1 dx2 dx3

. list in 1/3, noobs

recid dx1 dx2 dx3 age sex numprobs
84 4414 99811 14275 85 Female 1
105 25013 3572 -2506 23 Male 1
255 51909 1489 -V146 63 Male 1

The three diagnosis variables are restored to the dataset. However, we have added only a single
variable showing the total number of codes with problems for each record. q

> Example 2: Adding multiple variables from ICD codes

Now suppose that rather than creating a summary variable like we did in example 1, we want a
new variable for each diagnosis variable in our dataset. For example, in example 1 of [D] icd9, we
icd9 check each diagnosis code separately, requiring us to type the command three times. While
this is not burdensome for three codes, the full NHDS includes fourteen diagnosis codes, for which
we almost certainly would not want to type separate commands.

The easiest way to accomplish this is with a loop. We use forvalues because our codes all end
in a number.

. use http://www.stata-press.com/data/r14/nhds2010, clear
(Adult same-day discharges, 2010 NHDS)
. forvalues i=1/3 {

2. icd9 check dx‘i’, generate(dx‘i’_prob)

3.}
(dx1 contains defined ICD-9-CM codes; no missing values)
(dx2 contains defined ICD-9-CM codes; 179 missing values)
(dx3 contains 179 missing values)

dx3 contains invalid codes:

1. 1Invalid placement of period 0
2. Too many periods 0
3. Code too short 177
4. Code too long 0
5. Invalid 1st char (not 0-9, E, or V) 875
6. Invalid 2nd char (mot 0-9) 128
7. 1Invalid 3rd char (not 0-9) 0
8. Invalid 4th char (not 0-9) 0
9. Invalid 5th char (mot 0-9) 36
10. Code not defined 778

Total 1,994

This is exactly what we obtain in example 1 of [D] icd9.

icd — Introduction to ICD commands 273

If our variables had not been numbered sequentially, we could have either renamed them or used
foreach; see [P] foreach.
d

The methods shown above will work for any of the icd9, icd9p, or icd10 data-management
commands.

References
Baum, C. F, and N. J. Cox. 2007. Stata tip 45: Getting those data into shape. Stata Journal 7: 268-271.

Centers for Disease Control and Prevention. 2013. International Classification of Diseases, Ninth Revision, Clinical
Modification (ICD-9-CM). http://www.cdc.gov/nchs/icd/icd9cm.htm.

National Center for Health Statistics. 2011. International Classification of Diseases, Ninth Revision, Clinical Modification.
ftp://ftp.cdc.gov/pub/Health_Statistics/NCHS/Publications/ICD9-CM/201 1/.

——. 2012. National Hospital Discharge Survey: 2010 Public Use Data File Documentation.
ftp://ftp.cdc.gov/pub/Health _Statistics/NCHS/Dataset_Documentation/NHDS/NHDS_2010_Documentation.pdf.

World Health Organization. 2011. International Statistical Classification of Diseases and Related Health Problems, Vol. 2:
2010 Edition. Instruction manual. http://www.who.int/entity/classifications/icd/ICD10Volume2_en_2010.pdf?ua=1.

Also see
[D] icd9 — ICD-9-CM diagnosis and procedure codes
[D] icd10 — ICD-10 diagnosis codes

http://www.stata-journal.com/sjpdf.html?articlenum=dm0031
http://www.cdc.gov/nchs/icd/icd9cm.htm
ftp://ftp.cdc.gov/pub/Health_Statistics/NCHS/Publications/ICD9-CM/2011/
ftp://ftp.cdc.gov/pub/Health_Statistics/NCHS/Dataset_Documentation/NHDS/NHDS_2010_Documentation.pdf
http://www.who.int/entity/classifications/icd/ICD10Volume2_en_2010.pdf?ua=1

Title

icd9 — ICD-9-CM diagnosis and procedure codes

Description Quick start Menu Syntax
Options Remarks and examples Stored results References
Also see

Description

icd9 and icd9p are a suite of commands for working with ICD-9-CM codes. To see the current
version of the ICD-9-CM diagnosis codes and any changes that have been made since icd9 was
implemented, type icd9 query.

icd9 check, icd9 clean, and icd9 generate are data-management commands. icd9 check
verifies that a variable contains ICD-9-CM diagnosis codes and provides a summary of any problems
encountered. icd9 clean standardizes the format of the codes. icd9 generate may be used to
create a variable containing the associated category code, a description of the code, or an indicator
for whether the code is in a specified set of codes.

icd9 lookup and icd9 search are interactive utilities. icd9 lookup displays descriptions of the
diagnosis codes specified on the command line. icd9 search looks for relevant ICD-9-CM diagnosis
codes from key words given on the command line.

icd9p may be used in place of icd9 for any command above to obtain results for procedure
codes.

Quick start

Determine if ICD-9-CM diagnosis codes in diagl are invalid and store reasons in invalid
icd9 check diagl, generate(invalid)

Standardize display of codes in diag?2 to remove all periods and align codes by padding with spaces
icd9 clean diag2, pad

Create descr3 as the diagnosis code prepended to short description of diagnosis code in diag3
icd9 generate descr3 = diag3, description long

Create diabetes as an indicator for a diabetes diagnosis in diag4 using ICD-9-CM codes 250.xx
icd9 generate diabetes = diag4, range(25000/25093)

Look up descriptions for ICD-9-CM diagnosis codes E827.0 to E828.9
icd9 lookup E8270/E8289

Note: For any command above, icd9p may be used in place of icd9 to obtain results for procedure
codes.

274

icd9 — ICD-9-CM diagnosis and procedure codes 275

Menu

Data > ICD codes > ICD-9

Syntax

Verify that variable contains defined codes

{icd9|icd9p} check varname [if]| [in] [, any list generate(newvar)]

Clean variable and verify format of codes

{icd9|icd9p} clean varname [lf] [in] [, dots pad]

Generate new variable from existing variable
{icd9|icd9p} generate newvar = varname [if]| [in], category
{icd9|icd9p} generate newvar = varname [if] [in], description [long end |

{icd9|icd9p} generate newvar = varname [lf] [m} , range (icd9rangelist)

Display code descriptions

{icd9|icd9p} lookup icd9rangelist

Search for codes from descriptions

{icd9|icdop} search ["]rext["]| [["]text["] ...] [, or]

Display ICD-9 code source
{icd9|icd9p} query

icd9rangelist is
icd9code (the particular code)

icd9codex (all codes starting with)
icd9code/icd9code (the code range)

or any combination of the above, such as 001* 018/019 Ex 018.02. icd9codes must be typed with
leading Os. For example, type 001 (diagnosis code) or 01 (procedure code); typing 1 will result in
an error.

276 icd9 — ICD-9-CM diagnosis and procedure codes

Options

Options are presented under the following headings:
Options for icd9[p] check
Options for icd9[p] clean
Options for icd9[p] generate
Option for icd9[p] search
Warning: The option descriptions are brief and use jargon. Please read the Remarks and examples
before using the icd9 or icd9p command.

Options for icd9(p] check

any tells icd9[p] check to verify that the codes fit the format of ICD-9-CM codes but not to check
whether the codes are defined.

list reports any invalid or undefined codes that were found in the data by icd9[p] check.

generate (newvar) specifies that icd9[p| check create a new variable containing, for each observation,
0 if the observation contains a defined code or is missing. Otherwise, it contains a number from 1
to 10. The positive numbers indicate the kind of problem and correspond to the listing produced
by icd9[p] check. The values are labeled with the Stata-defined value label __icd_9.

Options for icd9(p] clean

dots specifies that icd9[p] clean include periods in the final format. If dots is not specified, then
all periods are removed.

pad specifies that icd9[p] clean pad the codes with spaces, front and back, to make the (implied)
dots align vertically in listings. Specifying pad makes the resulting codes look better when used
with most other Stata commands.

Options for icd9[p] generate

category, description, and range (icd9rangelist) specify what icd9[p] generate is to calculate.
You do not need to icd9[p] clean varname before using icd9[p] generate; it will accept any
ICD-9-CM format or combination of formats.

category generates a new variable that also contains ICD-9-CM codes. The resulting variable may
be used with the other icd9[p| subcommands. For procedure codes, the category code is the
first two characters. For diagnostic codes, the category code is the first three characters, except
for E-codes when it is the first four characters.

description creates newvar containing descriptions of the ICD-9-CM codes.

long is for use with description. It specifies that the code be prepended to the text describing
the code.

end modifies long (specifying end implies long) and places the code at the end of the string.

range (icd9rangelist) creates a new indicator variable equal to 1 when the ICD-9-CM code is in
the range specified and equal to O otherwise.

icd9 — ICD-9-CM diagnosis and procedure codes 277

Option for icd9|p] search

or specifies that ICD-9-CM codes be searched for descriptions that contain any word specified with
icd9[p| search. The default is to list only descriptions that contain all the words specified.

Remarks and examples

Remarks are presented under the following headings:
Using icd9 and icd9p
Verifying and cleaning variables
Interactive utilities
Creating new variables

If you have not yet read Introduction to ICD coding in [D] icd before using the icd10 command.

Using icd9 and icd9p

The ICD-9-CM coding system includes diagnosis and procedure codes. Some examples of diagnosis
codes are 552.3 (Diaphragmatic hernia with obstruction) and E871.0 (Foreign object left in body
during surgical operation). Some example of procedure codes are 01.2 (Craniotomy and craniectomy)
and 55.23 (Closed renal biopsy).

Many datasets record (and some people write) codes without the period, for example, diagnosis
code 550.1 may appear as 5501. The icd9 and icd9p commands understand both ways of recording
codes. The commands are also insensitive to codes recorded with or without leading and trailing
blanks. For E-codes and V-codes, the icd9 commands are case-insensitive. All the following codes
are acceptable formats.

diagnosis procedure

001 27.62
001. 72
00581 32.6
552.3 97.11
E800.2 872
8002 5523
v82.2 08.51

Important note: What constitutes a valid code changes between versions. For the rest of this entry,
a defined code is any code that is currently valid, was valid at some point since version 16 (V16,
effective 1 October 1998), or has meaning as a grouping of codes.

In icd9 and icd9p, descriptions that end with an asterisk (*) are used to denote codes that are
invalid for medical coding purposes but are defined as a category code or a sub-category code that
has been further subdivided. For example, diagnosis code 001 (Cholera) is invalid without a fourth
digit but is defined as a category code, so its description appears as cholerax. Codes that were
valid in the past, but no longer are, have descriptions that end with a hash mark (#). For example,
the diagnosis code 645.01 was deleted between V16 and V18. It remains a defined code, and its
description appears as prolonged preg-deliveredi.

The list of valid codes and their associated descriptions is from the U.S. Centers for Medicare
and Medicaid Services (CMS). These codes are jointly maintained and distributed by the U.S. Centers
for Disease Control and Prevention’s National Center for Health Statistics and by CMS (Centers for
Disease Control and Prevention 2013). To view the current version of ICD-9-CM diagnosis codes in
Stata, its source, and a log of changes that have been made to the list of ICD-9-CM codes since the
icd9 commands were implemented, type

278 icd9 — ICD-9-CM diagnosis and procedure codes

icd9 query
ICD9 Diagnostic Code Mapping Data for use with Stata, History
(output omitted)

V32

Dataset obtained 26aug2014 from
<http://www.cms.gov/Medicare/Coding/ICD9ProviderDiagnosticCodes/
> codes.html>, by selecting the ’Version 32...° file. Can be gotten
directly via
<http://www.cms.gov/Medicare/Coding/ICD9ProviderDiagnosticCodes/
> Downloads/ICD-9-CM-v32-master-descriptions.zip>. After unzipping, the
useful file name is "CMS32_DESC_SHORT_DX.txt (there are other files we
did not use)."

090ct2014: V32 put into Stata distribution

BETWEEN V31 and V32: There were no additional codes.

BETWEEN V31 and V32: O codes were deleted.

BETWEEN V31 and V32: There were no description changes.

icd9p query provides information about changes to procedure codes.

Throughout the remainder of this entry, we use nhds2010.dta, an extract of adult same-day
discharges from the 2010 National Hospital Discharge Survey (NHDS). Below, we describe the data
and list the first five observations for the diagnosis and procedure code variables.

. use http://www.stata-press.com/data/r14/nhds2010
(Adult same-day discharges, 2010 NHDS)

. describe
Contains data from http://www.stata-press.com/data/r14/nhds2010.dta

obs: 2,210 Adult same-day discharges, 2010
vars: 15 30 Jan 2015 15:03

size: 83,980 (_dta has notes)

storage display value

variable name type format label variable label
ageu byte %8.0g ageu Units for age
age byte %8.0g Age
sex byte %8.0g sex Sex
race byte %8.0g race Race
month byte %8.0g Discharge month
status byte %8.0g status Discharge status
region byte %8.0g region Region
atype byte %8.0g atype Type of admission
dx1 strb %9s Diagnosis 1
dx2 strb %9s Diagnosis 2
dx3 strb %9s Diagnosis 3 (imported incorrectly)
dx3corr strb %9s Diagnosis 3 (corrected)
prl str4 %9s Procedure 1
wgt int %12.0g Frequency weight
recid float %9.0g Order of record (raw data)

Sorted by: recid

icd9 — ICD-9-CM diagnosis and procedure codes 279

. list recid dx1 dx2 dx3 prl in 1/5

recid dx1 dx2 dx3 pril
1. 84 4414 99811 14275 3834
2. 105 25013 3572 -2506
3. 2565 51909 1489 -V1i46
4. 651 9678 E8528 8
5. 696 V271 64421 16564 7359

Verifying and cleaning variables

icd9 [p] check verifies that varname contains defined ICD-9-CM codes and, if not, provides a full
report on the problems. It is a good idea to begin with this command and fix any potential problems
before proceeding to other icd9[p] commands. However, the check subcommand is also useful for
tracking down problems when any of the other icd9[p] commands tell you that the “variable does
not contain ICD-9 codes”.

icd9[p| clean modifies the variable to ensure consistency and to make subsequent output look
better. This is not strictly necessary because all icd9[p] commands work equally well with cleaned
or uncleaned codes. icd9[p|] clean also can be used to verify that the codes in a variable conform
with the ICD-9-CM format, without checking to see if the codes are defined.

> Example 1: Checking the validity of a variable

We noticed when we listed our data that dx3 appears to be padded with dashes instead of spaces.
As a preemptive step, we replace the dashes with spaces by using the subinstr () function because

the icd9[p] commands ignore spaces.

. replace dx3=subinstr(dx3,"-"," ",.)
(1,009 real changes made)

. list recid dx1 dx2 dx3 prl in 1/5

recid dx1 dx2 dx3 pril
1. 84 4414 99811 14275 3834
2. 105 25013 3572 2506
3. 255 51909 1489 V146
4. 651 9678 E8528 8
5. 696 V271 64421 16564 7359

Now that we’ve replaced the characters we know will be a problem, we can icd9 check the
diagnosis variables. We add the generate() option so that we can identify any observations with

invalid codes.

280 icd9 — ICD-9-CM diagnosis and procedure codes

. icd9 check dx1, generate(probl)

(dx1 contains defined ICD-9-CM codes; no missing values)

. icd9 check dx2, generate(prob2)
(dx2 contains defined ICD-9-CM codes; 179 missing values)

. icd9 check dx3, generate(prob3)
(dx3 contains 277 missing values)

dx3 contains invalid codes:

e

Invalid 1st
Invalid 2nd
Invalid 3rd
Invalid 4th
Invalid 5th

O WO ~NOOdWN

[ure

Total

We see that all codes in dx1 are valid and all discharges have a primary diagnosis recorded. Likewise,
all codes in dx2 are defined, and we see that 179 observations did not have a second diagnosis.

However, icd9 check reports that 1,043 of the 2,210 observations on dx3 have some sort of
problem: 79 codes are too short, 128 have an invalid second character, and 836 are undefined. After
some investigation, we discover that when we imported the data, we started reading from the wrong
position in the file. Hereafter, we use the correctly imported variable, dx3corr.

. icd9 check dx3corr
(dx3corr contains defined ICD-9-CM codes; 356 missing values)

Rather than typing the icd9 check command once for each variable, we could have checked all

char
char
char
char
char

Code not defined

(not
(not
(not
(not
(not

Invalid placement of period
Too many periods
Code too short
Code too long

0-9, E, or V)
0-9)
0-9)
0-9)
0-9)

836

1,043

three simultaneously. See Working with multiple codes in [D] icd.

> Example 2: Standardizing the format of codes

If we plan to do any reporting with these codes later, we may want to make them more readable.
Suppose we want to report the primary diagnosis and procedure for each discharge. We can use
icd9 clean with the dots and pad options to add the period between the category code and any

subsequent digits and to align the periods.

. icd9 clean dx1, dots pad

(2210 changes made)

To standardize the procedure codes, we simply use the icd9p analogue to icd9.

icd9 — ICD-9-CM diagnosis and procedure codes 281

. icd9p clean pril, dots pad
(821 changes made)

. list recid dx1 prl in 1/5

recid dxi1 pril

84 441.4 38.34
105 250.13
255 519.09
651 967.8
696 V27.1 73.59

O W N

Using icd9[p] clean with undefined codes will not result in an error message. So if you are
using codes from a country other than the United States, the clean subcommand can still be used
to standardize the format of your codes and check for correct placement of the period.

4

Interactive utilities

icd9[p| search looks for relevant ICD-9-CM codes from the description given on the command line,
and icd9[p] lookup lists the descriptions of codes given on the command line. The two commands
complement each other.

> Example 3: Finding diagnosis codes

Suppose that we want to identify the observations for which the primary diagnosis is congestive
heart failure (CHF). As part of a quick exploratory analysis, we can use icd9 search to find ICD-9-CM
codes that we may want to use to define our study population. We use the terms “heart failure” and
“chf”. We enclose “heart failure” in quotation marks and use option or so that icd9 search looks
for either term.

. icd9 search "heart failure" chf, or

5 matches found:
398.91 rheumatic heart failure
428 heart failurex
428.0 chf nos
428.1 left heart failure
428.9 heart failure nos

Because the descriptions are abbreviated, we are concerned that some of the 428 codes may be
left out. So, we use icd9 lookup to look up a range of codes.

282 icd9 — ICD-9-CM diagnosis and procedure codes

. icd9 lookup 428*

16 matches found:
428 heart failurex
428.0 chf nos
428.1 left heart failure
428.20 systolic hrt failure nos
428.21 ac systolic hrt failure
428.22 chr systolic hrt failure
428.23 ac on chr syst hrt fail
428.30 diastolc hrt failure nos
428.31 ac diastolic hrt failure
428.32 chr diastolic hrt fail
428.33 ac on chr diast hrt fail
428.40 syst/diast hrt fail nos
428.41 ac syst/diastol hrt fail
428.42 chr syst/diastl hrt fail
428.43 ac/chr syst/dia hrt fail
428.9 heart failure nos

The same result could be found by typing
. icd9 lookup 428/4289

if we knew that 428.9 was the last code in the 428 category.

Creating new variables

icd9[p| generate produces new variables based on existing variables containing (cleaned or
uncleaned) ICD-9-CM codes. icd9[p| generate, category creates newvar containing the category
code that corresponds to the code in the existing variable. icd9[p] generate, description creates
newvar containing the abbreviated textual description of the ICD-9-CM code. icd9[p] generate,
range () produces numeric newvar containing 1 if varname records an ICD-9-CM code in the range
listed and containing 0 otherwise.

> Example 4: Creating an indicator variable

We review the list of codes we found in example 3 and decide that we will use 398.91 and all
of the 428 codes in our definition of a CHF diagnosis. Now we can use icd9 generate with the
range () option to create an indicator variable.

. icd9 generate chf = dx1, range(398.91 428%)
. tabulate chf [fweight=wgt]

chf Freq. Percent Cum.

0 563,048 97.88 97.88

1 12,192 2.12 100.00
Total 575,240 100.00

After tabulating the results, we see that about 2.1% of all same-day discharges were for CHF in 2010.
d

icd9 — ICD-9-CM diagnosis and procedure codes 283

> Example 5: Adding descriptions to codes

Continuing example 4, we may wish to know what procedures were performed for patients with
CHF. We check the procedure codes in prl and then generate a new variable with their descriptions.
We include option long so that we can see the ICD-9-CM procedure code as well.

. 1cd9p check pri
(prl contains defined ICD-9-CM procedure codes; 1389 missing values)

. icd9p generate prldescr = prl, description long

. tabulate pridescr [fweight=wgt] if chf==1, missing sort
label for pri Freq. Percent Cum.
7,185 58.93 58.93
37.22 1left heart cardiac cath 1,906 15.63 74.57
92.05 c-vasc scan/isotop funct 1,027 8.42 82.99
88.72 dx ultrasound-heart 776 6.36 89.35
03.31 spinal tap 498 4.08 93.44
39.95 hemodialysis 388 3.18 96.62
34.91 thoracentesis 138 1.13 97.75
99.60 cardiopulm resuscita nos 112 0.92 98.67
37.94 implt/repl carddefib tot 110 0.90 99.57
89.44 cardiac stress test nec 52 0.43 100.00
Total 12,192 100.00

We see that the majority of same-day discharges (58.9%) did not involve any procedure. When a
procedure was performed, the most common was left heart cardiac catheterization (15.6%).

4

Q Technical note

The dataset that supports icd9 and icd9p includes all codes that were added or deleted between
V16 and the current version (V32). However, the descriptions are updated with each new version. If
you are using icd9[p| generate with option description for codes other than the current version,
please review the icd9[p] query log for any changes to descriptions between the version you are
using and the current version.

a

> Example 6: Combining commands for reporting

The icd9[p] generate commands are useful in isolation, but their real power comes when they
are combined. For example, suppose that we want to make a graph showing the number of discharges
in each diagnosis category for ICD-9-CM chapter 4, “Diseases of Blood and Blood Forming Organs”.
We could use several generate commands and string functions, but icd9 generate greatly reduces
our work.

First, we extract the category code from the detailed diagnosis code. Then, because the icd9|p]
commands work equally well with complete codes or category codes, we can use icd9 generate
with the range (280/289) option to create an indicator variable for whether the discharge had a
primary diagnosis in chapter 4.

. 1cd9 generate dxlcat = dx1, main

. icd9 generate ch4 = dxlcat, range(280/289)

Next, we create a variable with the descriptions of the category codes in chapter 4.

. icd9 generate ch4des = dxlcat if ch4==1, description long

284 icd9 — ICD-9-CM diagnosis and procedure codes

Finally, we use graph hbar to make a horizontal bar graph showing the frequencies of same-day
discharges by diagnosis category.

. graph hbar (count) [fweight=wgt], over(ch4des) ytitle(Discharges)
> title(Diseases of Blood and Blood Forming Organs, span)
> subtitle(Same-day Discharges (2010), span)

Diseases of Blood and Blood Forming Organs
Same-day Discharges (2010)

280 iron deficiency anemias*
281 other deficiency anemia*
282 heredit hemolytic anemia*
283 acq hemolytic anemia*
284 aplastic anemia*
285 anemia nec/nos*
287 purpura & oth hemor cond*
288 whbc disorders*

289 other blood disease*

0 1,000 2,000 3,000
Discharges

See [G-2] graph bar for information about customizing the graph above. For more information about
graphing results, see [G-2] graph.
d

Stored results
icd9[p] check stores the following in r():

Scalars
r(e#) number of errors of type #
r (esum) total number of errors

icd9[p] clean stores the following in r():

Scalars
r(N) number of changes

icd9[p] lookup stores the following in r():

Scalars
r(N) number of codes found

References

Centers for Disease Control and Prevention. 2013. International Classification of Diseases, Ninth Revision, Clinical
Modification (ICD-9-CM). http://www.cdc.gov/nchs/icd/icd9cm.htm.

Gould, W. W. 2000. dm76: ICD-9 diagnostic and procedure codes. Stata Technical Bulletin 54: 8-16. Reprinted in
Stata Technical Bulletin Reprints, vol. 9, pp. 77-87. College Station, TX: Stata Press.

National Center for Health Statistics. 2011. International Classification of Diseases, Ninth Revision, Clinical Modification.
ftp://ftp.cdc.gov/pub/Health_Statistics/NCHS/Publications/ICD9-CM/201 1/.

http://www.cdc.gov/nchs/icd/icd9cm.htm
http://www.stata.com/products/stb/journals/stb54.pdf
ftp://ftp.cdc.gov/pub/Health_Statistics/NCHS/Publications/ICD9-CM/2011/

icd9 — ICD-9-CM diagnosis and procedure codes 285

——. 2012. National Hospital Discharge Survey: 2010 Public Use Data File Documentation.
ftp://ftp.cdc.gov/pub/Health_Statistics/NCHS/Dataset_Documentation/NHDS/NHDS _2010_Documentation.pdf.

Also see

[D] icd — Introduction to ICD commands

ftp://ftp.cdc.gov/pub/Health_Statistics/NCHS/Dataset_Documentation/NHDS/NHDS_2010_Documentation.pdf

Title

icd10 — ICD-10 diagnosis codes

Description Quick start Menu Syntax
Options Remarks and examples Stored results Acknowledgments
References Also see

Description

icd10 is a suite of commands for working with ICD-10 codes from the fourth edition (2010) and
later. To see the current version of the ICD-10 codes and any changes that have been made since
icd10 was implemented, type icd10 query.

icd10 check, icd10 clean, and icd10 generate are data-management commands. icd10
check verifies that a variable contains defined ICD-10 codes and provides a summary of any problems
encountered. icd10 clean standardizes the format of the codes. icd10 generate may be used to
create a binary indicator, a variable with modified ICD-10 codes, or the descriptions of the existing
codes.

icd10 lookup is an interactive utility that displays the description of the code specified on the
command line.

Quick start

Determine if ICD-10 diagnosis codes in diagl are invalid and store reasons in invalid
icd10 check diagl, generate(invalid)

Standardize display of codes in diag?2 to add a period and left-align codes
icd10 clean diag2, dots

Generate descr3 as descriptions of the diagnosis codes in diag3
icd10 generate descr3 = diag3, description

Create binary indicator for malignant or benign neoplasm, as indicated by an ICD-10 code beginning
with C or D in diag4
icd10 generate cancer = diag4, range(C* Dx)

Look up description for ICD-10 diagnosis code W70
icd10 lookup W70

Menu
Data > ICD codes > ICD-10

286

icd10 — ICD-10 diagnosis codes 287

Syntax

Verify that variable contains defined codes

icd10 check varname [zf] [, any list generate(newvar) year(#)]

Clean variable and verify formatting

icd10 clean varname [l_'f] [zn] [, dots pad}

Generate new variable from existing variable

icd10 generate newvar = varname [lf] [in] , category |short

icd10 generate newvar = varname [zf] [ln] , description [long end year(#)]

icd10 generate newvar = varname [lf] [ln] , range (icdlOrangelist)

Display code descriptions

icd10 lookup icdlOcode [, year(#)]

Display ICD-10 version

icd10 query

icdlOrangelist is one of the following or any combination thereof:

icd10code (the particular code)
icd10codex (all codes starting with)
icd10code/icdl0code (the code range)

Options
Options are presented under the following headings:
Options for icd10 check
Options for icd10 clean

Options for icdl0 generate
Option for icd10 lookup

Warning: The option descriptions are brief and use jargon. Please read Introduction to ICD coding
in [D] icd before using the icd10 command.

Options for icd10 check

any tells icd10 check to verify that the codes fit the format of ICD-10 codes but not to check whether
the codes are defined.

list reports any invalid or undefined codes that were found in the data by icd10 check.

288 icd10 — ICD-10 diagnosis codes

generate (newvar) specifies that 1cd10 check create a new variable containing, for each observation,
0 if the observation contains a defined code or is missing. Otherwise, it contains a number from 1
to 8 if the code is invalid or 99 if the code is undefined. The positive numbers indicate the kind
of problem and correspond to the listing produced by icd10 check. The values are labeled with
the Stata-defined value label __icd_10.

year (#) specifies the year that icd10 check should reference when determining whether a code
is defined. # may be 2010, which is the fourth edition of ICD-10 without any updates applied, or
it may be 2014, which is the fourth edition of ICD-10 with updates applied through 2014. The
appropriate value of # should be determined from the data source.

Options for icd10 clean
dots specifies that icd10 clean include periods in the final format. If dots is not specified, then
all periods are removed.

pad specifies that icd10 clean pad three-character codes with a space to the right of the code.

Options for icd10 generate

category, short, description, and range (icdlOrangelist) specify what icd10 generate is to
calculate. You do not need to icd10 clean varname before using icd10 generate; it will accept
any ICD-10 format or combination of formats.

category and short generate a new variable that also contains ICD-10 codes. The resulting
variable may be used with the other icd10 subcommands.

category specifies to extract the three-character category code from the ICD-10 code.

short is designed for users who have data with greater specificity than the standard four-
character ICD-10 codes. short will reduce five- and six-character codes to four characters.
Three- and four-character codes are left as they are.

description creates newvar containing descriptions of the ICD-10 codes.

long is for use with description. It specifies that the code be prepended to the text describing
the code.

end modifies long (specifying end implies long) and places the code at the end of the string.

year (#) specifies the year that icd10 generate should reference when assigning a code’s
description. # may be 2010, which is the fourth edition of ICD-10 without any updates applied,
or it may be 2014, which is the fourth edition of ICD-10 with updates applied through 2014.
The appropriate value of # should be determined from the data source.

range (icdl0Orangelist) creates a new indicator variable equal to 1 when the ICD-10 code is in the
range specified and equal to O otherwise.

Option for icd10 lookup

year (#) specifies the year that icd10 lookup should reference when determining a code’s description.
may be 2010, which is the fourth edition of ICD-10 without any updates applied, or it may be
2014, which is the fourth edition of ICD-10 with updates applied through 2014. The appropriate
value of # should be determined from the data source.

icd10 — ICD-10 diagnosis codes 289

Remarks and examples

Remarks are presented under the following headings:

Using icd10

Managing datasets with ICD-10 codes
Creating new variables

Working with U codes

If you have not yet read Introduction to ICD coding in [D] icd before using the icd10 command.

Using icd10

In the ICD-10 coding system, E11.0 (Type 2 diabetes mellitus: With coma) and C56 (Malignant
neoplasm of ovary) are examples of diagnostic codes, although some datasets record (and some people
write) E110 rather than E11.0. The icd10 commands understand both ways of recording codes. The
commands are also insensitive to codes recorded with or without leading and trailing blanks and are
case-insensitive. All the following codes are acceptable formats.

N94.0
M32
K12
F102
x40

The format of an ICD-10 diagnosis code is

{a-z}{o-s}{o-9}[.][o-9]

The code begins with a single letter followed by two digits. It may have an additional third digit
after the period.

The list of defined codes and their associated descriptions is provided under license from the
World Health Organization (WHO); see [R] copyright icd10. To view the current license and a log of
changes that WHO has made to the list of ICD-10 codes since the 1cd10 commands were implemented
in Stata, type

. 1cd10 query
ICD-10 Version and Change Log

License agreement
ICD-10 codes used by permission of the World Health Organization (WHO),
from: International Statistical Classification of Diseases and
Related Health Problems, Tenth Revision (ICD-10) 2010 Edition. Vols.
1-3. Geneva, World Health Organization, 2011.
See copyright icd10 for the ICD-10 copyright notification.

Edition 2010, 2014 update

The ICD-10 data were obtained from WHO on 15aug2014.

A1l updates scheduled for implementation through 01jan2014 have been
applied. This was verified using the Cumulative Official Updates to
ICD-10 which may be found at
http://www.who.int/classifications/icd/icd10updates/en/index.html and
then clicking the "Official WHO Updates combined 1996-2012 Volume 1"
link leading to
http://www.who.int/classifications/icd/updates/0Official_WHO_updates_c
> ombined_1996_2012_Volume_1.pdf.

(output omitted)

290 icd10 — ICD-10 diagnosis codes

Q Technical note

It is possible for codes to have up to two more digits to form five- and six-character codes. Supple-
mental subdivisions of ICD-10 codes may occur at the fifth and sixth characters. These supplemental
subdivisions are primarily used to indicate anatomical site and additional information about the diagno-
sis, for example, whether a fracture was open or closed (World Health Organization 2011). However,
these codes are not part of the standard four-character system codified by WHO for international
morbidity and mortality reporting and are not considered valid by icd10.

If your data contain these longer codes, you can use icd10 generate with option short to shorten
your codes to the relevant four-character subcategory code. Any existing three- and four-character
codes in the data are left as they were originally.

a

Managing datasets with ICD-10 codes

The icd10 suite of commands has three data-management commands. icd10 check verifies that
the ICD-10 codes in varname are valid. icd10 clean standardizes the format of ICD-10 codes in
varname. And icd10 generate produces a new variable from an existing variable containing ICD-10
codes. It will create a variable containing the associated category code, a description of the code, or
a binary indicator for whether the code is in a specified set of codes.

> Example 1: Checking the validity of a variable

Although not necessary, a good place to start is with icd10 check. The commands in the icd10
suite will return an error message if the codes in your data are not valid. Running icd10 check is
a good way to avoid error messages later.

The australialO dataset contains total deaths in 2010 for males and females from Australia,
taken from WHO’s mortality data. Below, we 1ist the first 10 observations.

icd10 — ICD-10 diagnosis codes 291

. use http://www.stata-press.com/data/r14/australial0
(Australian mortality data, 2010)

. list in 1/10, sepby(cause) noobs

cause sex deaths
A020 Male 1
A020 Female 4
A021 Male 3
A021 Female 1
A047 Male 16
A047 Female 25
A048 Female 4
A049 Male 1
A049 Female 1
A063 Male 1

We will specify the generate() option to create a new variable called prob that will indicate
that the code in cause is valid (prob = 0) or will indicate a value of 1 through 8 for the reason
the code is not valid. icd10 check also creates a value of 99, which indicates that the code is not
defined but otherwise conforms to the formatting requirements for ICD-10 codes.

. icd10 check cause, generate(prob)
(cause contains no missing values)

cause contains undefined codes:

e

Invalid placement of period
Too many periods

Code too short

Code too long

Invalid 1st char (not A-Z)
Invalid 2nd char (not 0-9)
Invalid 3rd char (not 0-9)
Invalid 4th char (not 0-9)
Code not defined

© 0 N U WwN
WO OOOOOO0OO

©

Total 3

icd10 check reports that there are three observations with undefined codes. In this case, this is
because we failed to specify that the data were reported using the ICD-10 codes from 2010.

. drop prob

. 1icd10 check cause, generate(prob) year(2010)
(cause contains defined ICD-10 codes; no missing values)

We see now that there are no errors in our dataset.

> Example 2: Standardizing the format of codes

If we plan to do any reporting with these codes later, we may want to make them more readable,
so we use icd10 clean with the dots option.

292 icd10 — ICD-10 diagnosis codes

When we listed our data before, it was sorted by cause of death and showed very few deaths
assigned to the first several codes. It might be more interesting to see the most frequent causes of
death. So before we list the data this time, we sort them in descending order with gsort.

. 1cd10 clean cause, dots
(2921 changes made)
. gsort -deaths

. list cause sex deaths in 1/10, sepby(cause)

cause sex deaths

e

121.9 Male 5,057
2. | 121.9 Female 4,885

3. C34.9 Male 4,859

4. I25.9 Male 3,805
5. 125.9 Female 3,636

6. F03 Female 3,517
7. cé1 Male 3,236
8. I64 Female 3,204

9. C34.9 Female 3,130

10. C50.9 Female 2,842

Now it is clear that we have a mix of three- and four-character codes. icd10 clean will automatically
change the display format of the diagnosis variable so that it is left-aligned, as shown above.

4

» Example 3: Looking up a single code

In example 2, we see that the highest number of reported deaths for men and women is for
code 121.9. If we were curious about what this code is, we could type

. 1icd10 lookup I21.9

I21.9 Acute myocardial infarction, unspecified

and we would see that these are deaths from acute myocardial infarction, commonly known as heart
attacks. Because the icd10 commands are case-insensitive and do not care whether we use the dot,
we could have typed i21.9, I219, or 1219, and Stata would have returned the same results.

N

Creating new variables

We now proceed to create new variables for later use.

icd10 — ICD-10 diagnosis codes 293

> Example 4: Creating an indicator variable

Suppose that after watching several high-action nature shows on television, we now believe that
death due to shark attack is common in Australia. It did not show up in our top-ten list above, but we
would like to see how many we have in our data. We can look up the code using WHO’s interactive
web utility (http://apps.who.int/classifications/icd10/browse/2010) and then use icd10 generate with
the range () option to create an indicator for whether death occurred by shark bite (shark).

. icd10 generate shark=cause, range(W56)
. tabulate shark [fweight=deaths]

shark Freq. Percent Cum.
0 143,472 100.00 100.00
1 1 0.00 100.00
Total 143,473 100.00

Reality was not nearly as exciting as television—there was only one death with a code relating to
shark bite in Australia in 2010.

If we wanted to study something less sensational, we could expand the icdlOrangelist to a more
complex list of codes. For example, perhaps we want to study the number of deaths from myocardial
infarction (MI) and complications that occurred afterward. We might pick codes 121.0 through 121.9,
122.0 through 122.9, and 123.0 through 123.8. We could create the variable mi by typing

. 1cd10 generate mi=cause, range(I210/I219 I220/I1229 I230/1238)
. tabulate mi [fweight=deaths]

mi Freq. Percent Cum.

0 133,522 93.06 93.06

1 9,951 6.94 100.00
Total 143,473 100.00

We see that 9,951 deaths were from MI or complications thereof, which equates to about 6.9% of all
deaths in Australia in 2010. It appears that hearts are far more dangerous than sharks.

N

Working with U codes

WHO reserves codes in categories U0O through U49 for the provisional assignment of new diseases
and designates codes U50 through U99 for research purposes (World Health Organization 2011).

In general, codes in categories U50 through U99 are treated as undefined. This means that you do
not need to take any special steps as long as your codes fit within the accepted four-character format.
However, if you wish to exclude U codes from the commands, you can use the if qualifier.

With the exception of icd10 generate with the description option, the 1cd10 commands
will continue to work as normal with undefined U codes. As a rule, icd10 generate with the
description option will return missing values for codes U50 through U99. Note that some of these
codes, however, are defined and considered valid by icd10 because WHO has distributed descriptions
for them. For these codes, icd10 generate with option description will return results. The
affected codes vary by year.

294 icd10 — ICD-10 diagnosis codes

> Example 5: Using U codes with icd10

Imagine a fictional case in which the Bulgarian Ministry of Health wished to analyze the prevalence
of methicillin-resistant Staphylococcus aureus (MRSA) and the location in which the patient acquired
it. They developed codes U50.0, U50.1, U50.2, and U50.9 to indicate whether this condition was
acquired in the community, a non-hospital health care setting, a hospital, or an undetermined location.

The mrsa dataset contains records for patients with any Staphylococcus aureus diagnosis from
2014. It includes a patient ID, patient sex, up to four diagnosis codes, and an indicator for MRSA that
was derived from the diagnosis codes.

. use http://www.stata-press.com/data/ri4/mrsa, clear

(Fictional MRSA data for Bulgaria, 2014)

. list in 1/10

id female dx1 dx2 dx3 dx4 mrsa

1. 0007990 female A49.0 no
2. 0010296 male L08.9 B95.6 no
3. 0019708 male A49.0 no
4. 0025573 male A49.0 no
5. 0034088 male A49.0 no
6. 0048047 female A49.0 no
7. 0066049 male A49.0 U82.1 U50.1 yes
8. 0067266 male A49.0 no
9. 0093122 male A41.0 U82.1 U50.2 yes
10. 0097310 female A49.0 no

Suppose we want to add a variable to the dataset that indicates whether MRSA was acquired in one
of the two health care settings. Even though codes U50.1 and U50.2 are not defined ICD-10 codes,

we can still use icd10 generate with the range () option.

To begin, we reshape the data, as discussed in Working with multiple codes.

. reshape long dx, i(id) j(dxnum)

(note: j =12 3 4)

Data wide -> long
Number of obs. 500 -> 2000
Number of variables 7 -> 5
j variable (4 values) -> dxnum
xij variables:

dx1l dx2 ... dx4 -> dx

Next, we icd10 check our data. In our fictional study, the ICD-10 diagnosis codes used the WHO’s

2014 updates, so we do not specify year().

icd10 — ICD-10 diagnosis codes 295

. icd10 check dx
(dx contains 1240 missing values)

dx contains undefined codes:

1. Invalid placement of period 0

2. Too many periods 0

3. Code too short 0

4. Code too long 0

5. 1Invalid 1st char (not A-Z) 0

6. 1Invalid 2nd char (not 0-9) 0

7. 1Invalid 3rd char (not 0-9) 0

8. 1Invalid 4th char (mot 0-9) 0

99. Code not defined 65
Total 65

icd10 check reports that there are undefined codes, as expected, but we do not have any errors in the
data. We can proceed to create our indicator variable using the same method described in Working
with multiple codes.

First, we create an indicator variable at the diagnosis level.
. 1icd10 generate hc=dx if mrsa==1, range(U501/U502)
Then, we use egen to apply that information to the whole record and reshape to create the
patient-level indicator.

. by id, sort: egen hlthcare=total(hc)
. drop hc

. reshape wide dx, i(id) j(dxnum)
(note: j =12 3 4)

Data long -> wide
Number of obs. 2000 -> 500
Number of variables 6 -> 8
j variable (4 values) dxnum -> (dropped)
xij variables:
dx -> dx1l dx2 ... dx4
. tabulate hlthcare if mrsa==
hlthcare Freq. Percent Cum.
0 14 21.54 21.54
1 51 78.46 100.00
Total 65 100.00

We see that about 78.5% of all MRSA infections were acquired in a health care facility.

296 icd10 — ICD-10 diagnosis codes

Stored results

icd10 check stores the following in r():

Scalars
r(e#) number of errors of type #
r (esum) total number of errors

icd10 clean stores the following in r():

Scalars
r(N) number of changes

icd10 lookup stores the following in r():

Scalars
r(N) number of codes found
Acknowledgments

We thank the World Health Organization for making ICD-10 codes available to Stata users. See
[R] copyright icd10 for allowed usage.

We thank Joe Canner of the Johns Hopkins University School of Medicine, who wrote mycd10
and mycd10p, which provide many utilities for ICD-10 diagnosis and procedure codes. The commands
rely on a user-supplied ICD-10 lookup dataset for diagnosis codes and ICD-10-PCS codes from the U.S.
Centers for Medicare and Medicaid Services for procedure codes.

References

de Kraker, M. E. A., M. Wolkewitz, P. G. Davey, H. Grundmann, and Burden Study Group. 2011. Clinical
impact of antimicrobial resistance in European hospitals: Excess mortality and length of hospital stay related
to methicillin-resistant staphylococcus aureus bloodstream infections. Antimicrobial Agents and Chemotherapy 55:
1598-1605.

Klevens, R. M., M. A. Morrison, J. Nadle, S. Petit, K. Gershman, S. Ray, L. H. Harrison, R. Lynfield, G. Dumyati,
J. M. Townes, A. S. Craig, E. R. Zell, G. E. Fosheim, L. K. McDougal, R. B. Carey, and S. K. Fridkin. 2007.
Invasive methicillin-resistant Staphylococcus aureus infections in the United States. Journal of the American Medical
Association 298: 1763-1771.

World Health Organization. 2011. International Statistical Classification of Diseases and Related Health Problems, Vol. 2:
2010 Edition. Instruction manual. http://www.who.int/entity/classifications/icd/ICD10Volume2_en_2010.pdf?ua=1.

World Health Organization Mortality Data Base (Cause of Death Query online; accessed December 11, 2014).
http://apps.who.int/healthinfo/statistics/mortality/causeofdeath_query/.

Also see

[D] icd — Introduction to ICD commands

http://www.who.int/entity/classifications/icd/ICD10Volume2_en_2010.pdf?ua=1
http://apps.who.int/healthinfo/statistics/mortality/causeofdeath_query/

Title

import — Overview of importing data into Stata

Description Remarks and examples Reference Also see

Description

This entry provides a quick reference for determining which method to use for reading non-Stata
data into memory. See [U] 21 Entering and importing data for more details.

Remarks and examples

Remarks are presented under the following headings:

Summary of the different methods
import excel
import delimited
odbc
infile (free format)—infile without a dictionary
infix (fixed format)
infile (fixed format)—infile with a dictionary
import sasxport
import haver (Windows only)
xmluse
Examples
Video example

Summary of the different methods

import excel

o import excel reads worksheets from Microsoft Excel (.x1s and .x1sx) files.
o Entire worksheets can be read, or custom cell ranges can be read.

o See [D] import excel.

import delimited

o import delimited reads text-delimited files.

o The data can be tab-separated or comma-separated. A custom delimiter may also be specified.

o

An observation must be on only one line.

e}

The first line in the file can optionally contain the names of the variables.

o

See [D] import delimited.

297

298 import — Overview of importing data into Stata

odbc

o ODBC, an acronym for Open DataBase Connectivity, is a standard for exchanging data between
programs. Stata supports the ODBC standard for importing data via the odbc command and can
read from any ODBC data source on your computer.

o See [D] odbec.

infile (free format)—infile without a dictionary

o The data can be space-separated, tab-separated, or comma-separated.

o Strings with embedded spaces or commas must be enclosed in quotes (even if tab- or comma-
separated).

o An observation can be on more than one line, or there can even be multiple observations per line.

o See [D] infile (free format).

infix (fixed format)

o The data must be in fixed-column format.
o An observation can be on more than one line.
o infix has simpler syntax than infile (fixed format).

o See [D] infix (fixed format).

infile (fixed format)—infile with a dictionary

o The data may be in fixed-column format.

o An observation can be on more than one line.

o ASCII or EBCDIC data can be read.

o infile (fixed format) has the most capabilities for reading data.

o See [D] infile (fixed format).

import sasxport

o import sasxport reads SAS XPORT Transport format files.

o import sasxport will also read value label information from a formats.xpf XPORT file, if
available.

o See [D] import sasxport.

import haver (Windows only)

o import haver reads Haver Analytics (http://www.haver.com/) database files.

o See [D] import haver.

http://www.haver.com/

import — Overview of importing data into Stata 299

xmluse

o xmluse reads extensible markup language (XML) files—highly adaptable text-format files derived

from the standard generalized markup language (SGML).

o xmluse can read either an Excel-format XML or a Stata-format XML file into Stata.

o See [D] xmlsave.

Examples

> Example 1: Tab-separated data

1 0 1 John Smith m
0 0 1 Paul Lin m
0 1 0 Jan Doe f

0 0 Julie McDonald f£

begin examplel.raw

end examplel.raw

contains tab-separated data. The type command with the showtabs option shows the tabs:

. type examplel.raw, showtabs

1<T>0<T>1<T>John Smith<T>m
0<T>0<T>1<T>Paul Lin<T>m
0<T>1<T>0<T>Jan Doe<T>f
O<T>0<T>.<T>Julie McDonald<T>f

It could be read in by

. import delimited a b ¢ name gender using examplel

> Example 2: Comma-separated data

c,name,gender
1,John Smith,m
1,Paul Lin,m
0,Jan Doe,f
,Julie McDonald,f

a,b,
1,0,
0,0,
0,1,
0,0,

>
3
>
>

begin example2.raw

could be read in by

. import delimited using example2

> Example 3: Tab-separated data with double-quoted strings

1 0 1 "John Smith" m
0 0 1 "Paul Lin" m
0 1 0 "Jan Doe" £
0 0 "Julie McDonald" £

end example2.raw

begin example3.raw

end example3.raw

300 import — Overview of importing data into Stata

contains tab-separated data with strings in double quotes.

. type example3.raw, showtabs

1<T>0<T>1<T>"John Smith"<T>m
0<T>0<T>1<T>"Paul Lin"<T>m
0<T>1<T>0<T>"Jan Doe"<T>f
O<T>0<T>.<T>"Julie McDonald"<T>f

It could be read in by
. infile byte (a b c) stri5 name strl gender using example3

or

. import delimited a b c name gender using example3
or
. infile using dict3

where the dictionary dict3.dct contains

begin dict3.dct
infile dictionary using example3 {
byte a
byte b
byte c
strl5 name
strl gender
}
end dict3.dct

> Example 4: Space-separated data with double-quoted strings

begin example4.raw

1 01 "John Smith" m

0 01 "Paul Lin" m

0 1 0 "Jan Doe" £

00 "Julie McDonald" f

end example4.raw

could be read in by
. infile byte (a b ¢) strlb name strl gender using example4
or

. infile using dict4

where the dictionary dict4.dct contains

begin dict4.dct
infile dictionary using exampled {

byte a
byte b
byte c

strl5 name
strl gender

end dict4.dct

import — Overview of importing data into Stata 301

> Example 5: Fixed-column format

begin example5.raw
10imJohn Smith

001mPaul Lin

010fJan Doe

00 fJulie McDonald

end exampleS.raw

could be read in by

. infix a 1 b 2 ¢ 3 str gender 4 str name 5-19 using exampleb

or

. infix using dictba

where dictba.dct contains

begin dictSa.dct
infix dictionary using exampleb {
a 1
b 2
c 3
str gender 4
str name 5-19

end dictSa.dct

or

. infile using dictbb

where dict5b.dct contains

begin dictSb.dct
infile dictionary using example5 {
byte a %1t
byte b %1t
byte c %1t
strl gender %ls
strib name %15s
}
end dict5b.dct

> Example 6: Fixed-column format with headings

begin example6.raw
line 1 : a heading

There are a total of 4 lines of heading.

The next line contains a useful heading:

+ 1 + 2 + 3————t————4————+—
1 0 1 m John Smith
0 0 1 m Paul Lin
0 1 0 f Jan Doe
0 0 f Julie McDonald

end example6.raw

could be read in by

. infile using dict6a

302 import — Overview of importing data into Stata

where dict6a.dct contains

begin dict6a.dct
infile dictionary using example6 {
_firstline(5)
byte a
byte b
_column(17) byte c %1t
stril gender
_column(33) strl5 name %15s
}
end dict6a.dct

or could be read in by

. infix 5 first a 1 b

or could be read in by

. infix using dict6éb

where dict6b.dct contains

9 ¢ 17 str gender 25 str name 33-46 using example6

begin dict6b.dct
infix dictionary using example6 {
5 first
a 1
b 9
c 17
str gender 25
str name 33-46
}
end dict6b.dct

> Example 7: Fixed-column format with observations spanning multiple lines

begin example7.raw

gender name

o o

c
1
ohn Smith
1

o

aul Lin

=g
o

HhHOUHOUTUE OuLBE ~p
of
o
(o]
(0]

Julie McDonald

end example7.raw

could be read in by

. infile using dict7a

import — Overview of importing data into Stata

303

where dict7a.dct contains

begin dict7a.dct
infile dictionary using example7 {
_firstline(2)
byte a
byte Db
byte [¢
_line(2)

strl gender
_line(3)
stri5 name %15s

}
end dict7a.dct

or, if we wanted to include variable labels,

. infile using dict7b

where dict7b.dct contains

begin dict7b.dct
infile dictionary using example7 {
_firstline(2)
byte a "Question 1"
byte b "Question 2"
byte ¢ "Question 3"
_line(2)
strl gender "Gender of subject"
_line(3)
stri5 name %15s
}
end dict7b.dct

infix could also read these data,

. infix 2 first 3 lines a 1 b 3 ¢ 5 str gender 2:1 str name 3:1-15 using example7

or the data could be read in by

. infix using dict7c

where dict7c.dct contains

begin dict7c.dct

infix dictionary using example7 {

2 first
a 1
b 3
c 5
str gender 2:1
str name 3:1-15
}

end dict7c.dct

or the data could be read in by

. infix using dict7d

304 import — Overview of importing data into Stata

where dict7d.dct contains

begin dict7d.dct
infix dictionary using example7 {
2 first
a 1
b 3
c 5
/
str gender 1
/
str name 1-15
}
end dict7d.dct

Video example

Copy/paste data from Excel into Stata

Reference
Dicle, M. F.,, and J. Levendis. 2011. Importing financial data. Stata Journal 11: 620-626.

Also see
[D] edit — Browse or edit data with Data Editor
[D] import delimited — Import delimited text data
[D] import excel — Import and export Excel files
[D] import haver — Import data from Haver Analytics databases
[D] import sasxport — Import and export datasets in SAS XPORT format
[D] infile (fixed format) — Read text data in fixed format with a dictionary
[D] infile (free format) — Read unformatted text data
[D] infix (fixed format) — Read text data in fixed format
[D] input — Enter data from keyboard
[D] odbe — Load, write, or view data from ODBC sources
[D] xmlsave — Export or import dataset in XML format
[D] export — Overview of exporting data from Stata

[U] 21 Entering and importing data

http://www.youtube.com/watch?v=iCvZ9pvPy-8
http://www.stata-journal.com/sjpdf.html?articlenum=dm0061

Title

import delimited — Import delimited text data

Description Quick start Menu
Syntax Options for import delimited Options for export delimited

Remarks and examples Also see

Description

import delimited reads into memory a text-delimited file from disk. Regardless of the program
that created the file, import delimited reads text (ASCII, UTF-8, or UTF-16) files in which there is
one observation per line and the values are separated by commas, tabs, or some other delimiter. The
first line of the file can contain the variable names.

Stata has other commands for importing data. If you are not sure that import delimited will
do what you are looking for, see [D] import and [U] 21 Entering and importing data.

export delimited, by default, writes data into a file in comma-separated (.csv) format. export
delimited also allows you to specify any separation character delimiter that you prefer. The exported
text file is UTF-8 encoded.

Quick start

Load comma-delimited mydata.csv with 2 variables to be named v1 and v2
import delimited vl v2 using mydata

As above, but with variable names on the first row
import delimited mydata

As above, but with variable names in row 5 and an ignorable header in the first 4 rows
import delimited mydata, varnames(5)

Load only columns 2 to 300 and the first 1,000 rows with variable names in row 1
import delimited mydata, colrange(2:300) rowrange(:1000)

Load tab-delimited data from mydata.txt
import delimited mydata.txt, delimiters(tab)

Load semicolon-delimited data from mydata.txt
import delimited mydata.txt, delimiters(";")

Force columns 2 to 6 to be read as string to preserve leading zeros
import delimited mydata, stringcols(2/6)

Export data in memory to mydata.csv
export delimited mydata

As above, but export only v1 and v2
export delimited vl v2 using mydata

As above, but output numeric values for variables with value labels
export delimited vl v2 using mydata, nolabel

305

306 import delimited — Import delimited text data

Menu
import delimited
File > Import > Text data (delimited, *.csv, ...)

export delimited
File > Export > Text data (delimited, *.csv, ...)

Syntax
Load a delimited text file

import delimited [using] filename [, import_delimited_options}

Rename specified variables from a delimited text file

import delimited extvarlist using filename [, imp()rt_delimited_()pti()ns}

Save data in memory to a delimited text file

export delimited [using] filename [lf} [in] [, export_delimited_options}

Save subset of variables in memory to a delimited text file

export delimited [varlist} using filename [lf] [in] [, exporz_delimized_options]

If filename is specified without an extension, .csv is assumed for both import delimited and
export delimited. If filename contains embedded spaces, enclose it in double quotes.

extvarlist specifies variable names of imported columns.

import_delimited_options Description

delimiters("chars" [, collapse | asstring]) use chars as delimiters

rowrange ([start} [rend]) row range of data to load
colrange ([start} [zend]) column range of data to load
varnames (# | nonames) treat row # of data as variable names or the
data do not have variable names
case(preserve | lower | upper) preserve the case or read variable names as
lowercase (the default) or uppercase
asdouble import all floating-point data as doubles
asfloat import all floating-point data as floats
clear replace data in memory
bindquotes(loose |strict |nobind) specify how to handle double quotes in data
stripquotes(yes |no|default) remove or keep double quotes in data
numericcols (numlist | _all) force specified columns to be numeric
stringcols (numlist | _all) force specified columns to be string
encoding("encoding") specify the encoding of the text file being

imported

import delimited — Import delimited text data 307

export_delimited_options Description
Main

delimiter ("char" |tab) use char as delimiter

novarnames do not write variable names on the first line

nolabel output numeric values (not labels) of labeled
variables

datafmt use the variables’ display format upon export

quote always enclose strings in double quotes

replace overwrite existing filename

Options for import delimited

delimiters("chars" [, collapse | asstring]) allows you to specify other separation characters.
For instance, if values in the file are separated by a semicolon, specify delimiters(";"). By
default, import delimited will check if the file is delimited by tabs or commas based on
the first line of data. Specify delimiters("\t") to use a tab character, or specify delim-
iters("whitespace") to use whitespace as a delimiter.

collapse forces import delimited to treat multiple consecutive delimiters as just one delimiter.

asstring forces import delimited to treat chars as one delimiter. By default, each character
in chars is treated as an individual delimiter.

Most delimited files use commas, semicolons, tabs, or whitespace. In rare cases, the file to be
imported may contain multibyte Unicode characters. Special handling is required if a multibyte
UTF-8 encoded Unicode character is specified in chars. Each byte in a multibyte Unicode character
is treated as a separate delimiter because chars are treated as a sequence of bytes. If you only have
one Unicode character as a delimiter, you should specify asstring. The delimiters() option
is not intended for use with more than one Unicode character. See the technical note in Remarks
and examples.

rowrange([start} [tend]) specifies a range of rows within the data to load. start and end are
integer row numbers.

colrange([start} [:end]) specifies a range of variables within the data to load. start and end are
integer column numbers.

varnames (# | nonames) specifies where or whether variable names are in the data. By default, import
delimited tries to determine whether the file includes variable names. import delimited
translates the names in the file to valid Stata variable names. The original names from the file are
stored unmodified as variable labels.

varnames (#) specifies that the variable names are in row # of the data; any data before row #
should not be imported.

varnames (nonames) specifies that the variable names are not in the data.

case(preserve | lower | upper) specifies the case of the variable names after import. The default
is case(lowercase).

asdouble imports floating-point data as type double. The default storage type of the imported
variables is determined by set type.

asfloat imports floating-point data as type float. The default storage type of the imported variables
is determined by set type.

308 import delimited — Import delimited text data

clear specifies that it is okay to replace the data in memory, even though the current data have not
been saved to disk.

bindquotes(loose |strict |nobind) specifies how import delimited handles double quotes
in data. Specifying loose (the default) tells import delimited that it must have a matching
open and closed double quote on the same line of data. strict tells import delimited that
once it finds one double quote on a line of data, it should keep searching through the data for
the matching double quote even if that double quote is on another line. Specifying nobind tells
import delimited to ignore double quotes for binding.

stripquotes(yes |no|default) tells import delimited how to handle double quotes. yes
causes all double quotes to be stripped. no leaves double quotes in the data unchanged. default
automatically strips quotes that can be identified as binding quotes. default also will identify
two adjacent double quotes as a single double quote because some software encodes double quotes
that way.

numericcols (numlist | —all) forces the data type of the column numbers in numlist to be numeric.
Specifying _all will import all data as numeric.

stringcols (numlist | _all) forces the data type of the column numbers in numlist to be string.
Specifying _all will import all data as strings.

encoding("encoding") specifies the encoding of the text file to be imported. The default is
encoding("latinl"). Specify encoding("utf-8") for the files to be encoded in UTF-8.
import delimited uses Java encoding. A list of available encodings can be found at
http://docs.oracle.com/javase/8/docs/technotes/guides/intl/encoding.doc.html.

Option charset() is a synonym for encoding().

Options for export delimited

delimiter ("char" |tab) allows you to specify other separation characters. For instance, if you
want the values in the file to be separated by a semicolon, specify delimiter(";"). The default
delimiter is a comma. Only ASCII characters are allowed.

delimiter(tab) specifies that a tab character be used as the delimiter.

novarnames specifies that variable names not be written in the first line of the file; the file is to
contain data values only.

nolabel specifies that the numeric values of labeled variables be written into the file rather than the
label associated with each value.

datafmt specifies that all variables be exported using their display format. For example, the number
1000 with a display format of %4.2f would export as 1000.00, not 1000. The default is to use
the raw, unformatted value when exporting.

quote specifies that string variables always be enclosed in double quotes. The default is to only
double quote strings that contain spaces or the delimiter.

replace specifies that filename be replaced if it already exists.

Remarks and examples

Remarks are presented under the following headings:

import delimited
export delimited
Video example

http://docs.oracle.com/javase/8/docs/technotes/guides/intl/encoding.doc.html

import delimited — Import delimited text data 309

import delimited

import delimited reads in text data where each data point is separated by a delimiter character.
The two most common types of text data to import are comma-space-value (.csv) text files and
tab-separated text files. import delimited can automatically detect either a comma or a tab as the
delimiter. To import your data, type

. import delimited filename

import delimited reads your data if
1. it can find the file; and
2. the file meets import delimited’s expectations as to its format.

If you type import delimited myfile, myfile.csv is read into Stata. If your file is called
myfile.txt, type import delimited using myfile.txt. If typing import delimited filename
does not produce the desired result, you may need to specify an option or try one of Stata’s other
import commands; see [D] import.

> Example 1

We have a .csv data file on automobiles called auto.csv.

. copy http://www.stata.com/examples/auto.csv auto.csv

. type auto.csv
make,price,mpg,rep78,foreign

"AMC Concord",4099,22,3,"Domestic"
"AMC Pacer",4749,17,3,"Domestic"
"AMC Spirit",3799,22,,"Domestic"
"Buick Century",4816,20,3,"Domestic"
"Buick Electra",7827,15,4,"Domestic"
"Buick LeSabre",5788,18,3,"Domestic"
"Buick Opel",b4453,26,,"Domestic"
"Buick Regal",5189,20,3,"Domestic"
"Buick Riviera",10372,16,3,"Domestic"
"Buick Skylark",4082,19,3,"Domestic"

This file was saved by a spreadsheet and can be read by typing

. import delimited auto

To look at what we just loaded, type

. list
make price mpg rep78 foreign
1. AMC Concord 4099 22 3 Domestic
2. AMC Pacer 4749 17 3 Domestic
3. AMC Spirit 3799 22 . Domestic
4. Buick Century 4816 20 3 Domestic
5. Buick Electra 7827 15 4 Domestic
6. Buick LeSabre 5788 18 3 Domestic
7. Buick Opel 4453 26 . Domestic
8. Buick Regal 5189 20 3 Domestic
9. Buick Riviera 10372 16 3 Domestic
10. Buick Skylark 4082 19 3 Domestic

310 import delimited — Import delimited text data

These data contain a combination of string and numeric variables. import delimited will
determine the correct data type for each variable. You can also force the data type of a variable by
using the numericcols() or stringcols() option. q

> Example 2

import delimited allows you to read in a subset of the text data by using the rowrange () and
colrange () options. To read rows 2 through 5 of auto.csv, you need to specify rowrange(3:6)
because the first row of data contains the variable names.

. clear

. import delimited auto, rowrange(3:6)
(5 vars, 4 obs)

. list
make price mpg rep78 foreign
1. AMC Pacer 4749 17 3 Domestic
2. AMC Spirit 3799 22 . Domestic
3. Buick Century 4816 20 3 Domestic
4. Buick Electra 7827 15 4 Domestic

We used rowrange(3:6) instead of rowrange(2:5) because row 1 of the data contained the
variable names.
To import the first three columns and last four rows of auto.csv, type

. clear

. import delimited auto, colrange(:3) rowrange(8)
(3 vars, 4 obs)

. list
make price mpg
1. Buick Opel 4453 26
2. Buick Regal 5189 20
3. Buick Riviera 10372 16
4. Buick Skylark 4082 19

> Example 3

import delimited can handle delimiters other than commas and tabs. Suppose that you had the
auto.txt file.

. type auto.txt, showtabs

"AMC Concord" 4099 22 3 "Domestic"
"AMC Pacer" 4749 17 3 "Domestic"
"AMC Spirit" 3799 22 NA '"Domestic"
"Buick Century" 4816 20 3 "Domestic"
"Buick Electra" 7827 15 4 "Domestic"
"Buick LeSabre" 5788 18 "Domestic"
"Buick Opel" 4453 26 NA "Domestic"

w

"Buick Regal" 5189 20 3 "Domestic"
"Buick Riviera" 10372 16 3 "Domestic"
"Buick Skylark" 4082 19 3 "Domestic"

import delimited — Import delimited text data 311

We specified type’s showtabs option so that no tabs are shown. These data are not tab-delimited
or comma-delimited. If you use import delimited without any options, you will not get the results
you expect.

. clear

. import delimited auto.txt
(1 var, 10 obs)

When import delimited tries to read data that have no tabs or commas, it is fooled into
thinking that the data contain just one variable. You can use the delimiter () option to import the
data correctly. delimiter (" ") tells import delimited to use spaces (“) as the delimiter, and
delimiter(, collapse) will treat multiple consecutive space delimiters as one delimiter.

. clear

. import delimited auto.txt, delimiter(" ", collapse)
(5 vars, 10 obs)

. describe

Contains data

obs: 10
vars: 5
size: 260
storage display value
variable name type format label variable label
vl stri3 %13s
v2 int %8.0g
v3 byte %8.0g
v4 str2 %9s
v5 str8 %9s
Sorted by:
Note: Dataset has changed since last saved.
. list
vl v2 v3 véd vb
1. AMC Concord 4099 22 3 Domestic
2. AMC Pacer 4749 17 3 Domestic
3. AMC Spirit 3799 22 NA Domestic
4. Buick Century 4816 20 3 Domestic
5. Buick Electra 7827 15 4 Domestic

6. Buick LeSabre 5788 18 3 Domestic
7. Buick Opel 4453 26 NA Domestic
8. Buick Regal 5189 20 3 Domestic
9. Buick Riviera 10372 16 3 Domestic
10. Buick Skylark 4082 19 3 Domestic

The data that were loaded now contain the correct number of variables and observations. However,
the variable rep78 should be a numeric variable, but it was imported as a string because the value
NA was used for missing values. To force rep78 to have a numeric storage type, use the option
numericcols().

312 import delimited — Import delimited text data

. clear
. import delimited auto.txt, delim(" ", collapse) numericcols(4)
(5 vars, 10 obs)
. describe
Contains data
obs: 10
vars: 5
size: 250
storage display value
variable name type format label variable label
vi stri3 %13s
v2 int %8.0g
v3 byte %8.0g
vd byte %8.0g
v5 str8 %9s
Sorted by:
Note: Dataset has changed since last saved.
. list
vl v2 v3 v4d vb
1. AMC Concord 4099 22 3 Domestic
2. AMC Pacer 4749 17 3 Domestic
3. AMC Spirit 3799 22 . Domestic
4. Buick Century 4816 20 3 Domestic
5. Buick Electra 7827 15 4 Domestic
6. Buick LeSabre 5788 18 3 Domestic
7. Buick Opel 4453 26 . Domestic
8. Buick Regal 5189 20 3 Domestic
9. Buick Riviera 10372 16 3 Domestic
10. Buick Skylark 4082 19 3 Domestic

Q Technical note

Most delimited files use commas, semicolons, tabs, or whitespace. In rare cases, the file to be
imported uses a multibyte Unicode character as the delimiter. The delimiters() option treats its
argument as individual bytes, not characters.

Consider the Euro symbol and a Unicode character for an arrow pointing down to the right. The
Euro symbol is made up of 226,130,172 bytes. The arrow pointing down to the right is made up
226,172,130 bytes. Notice that they have the same bytes in them, just in a different order. If you
specify either one in import delimited, delimiter (), the individual bytes 226, 130, and 172 will
all be treated as delimiters. Thus, import delimited will not distinguish between the two characters.
In fact, if any of those bytes appear in other characters, they too will be treated as delimiters.

You should probably avoid using Unicode characters as delimiters, but if your file has them, we
recommend using asstring to treat all bytes of one multibyte Unicode character as one character.
If your file is delimited with multiple Unicode characters, there is no way to tell import delimited to
distinguish between them. You can try specifying multiple Unicode characters, but be aware that you
may encounter problems related to the above behavior.

a

import delimited — Import delimited text data 313

export delimited

export delimited creates a comma-separated text file from the Stata dataset in memory. If your
goal is to send data to another Stata user, you could use export delimited, but it is better to send
a .dta dataset. This will work even if you use Stata for Windows and your colleague uses Stata for
Mac or Unix. All versions of Stata can read each other’s .dta files.

To view other methods for moving your data into other applications, see [D] export.

> Example 4

To save the data currently in memory into a specified .csv file, type

. use http://www.stata-press.com/data/ri4/auto, clear
(1978 Automobile Data)

. export delimited myauto
file myauto.csv saved

> Example 5

You can also export a subset of the data in memory by typing

. use http://www.stata-press.com/data/r14/auto
(1978 Automobile Data)

. export delimited make mpg rep78 foreign in 1/10 using myauto
file myauto.csv already exists
r(602);

If the file already exists, you can use replace to write over it:

. export delimited make mpg rep78 foreign in 1/10 using myauto, replace

. type myauto.csv
make,mpg,rep78,foreign

AMC Concord,22,3,Domestic
AMC Pacer,17,3,Domestic

AMC Spirit,22,,Domestic
Buick Century,20,3,Domestic
Buick Electra,15,4,Domestic
Buick LeSabre,18,3,Domestic
Buick Opel,26, ,Domestic
Buick Regal,20,3,Domestic
Buick Riviera,16,3,Domestic
Buick Skylark,19,3,Domestic

Video example

Importing delimited data

Also see
[D] export — Overview of exporting data from Stata

[D] import — Overview of importing data into Stata

http://www.youtube.com/watch?v=60RBNsqzL6I&feature=youtu.be

Title

import excel — Import and export Excel files

Description Quick start Menu
Syntax Options for import excel Options for export excel
Remarks and examples Stored results References
Also see
Description

import excel loads an Excel file, also known as a workbook, into Stata. import excel filename,
describe lists available sheets and ranges of an Excel file. export excel saves data in memory
to an Excel file. Excel 1997/2003 (.x1s) files and Excel 2007/2010 (.x1sx) files can be imported,
exported, and described using import excel, export excel, and import excel, describe.

import excel and export excel are supported on Windows, Mac, and Linux.

import excel and export excel look at the file extension, .x1ls or .x1lsx, to determine which
Excel format to read or write.

For performance, import excel imposes a size limit of 40 MB for Excel 2007/2010 (.x1lsx)
files. Be warned that importing large .x1sx files can severely affect your machine’s performance.

import excel auto first looks for auto.x1s and then looks for auto.xlsx if auto.x1s is not
found in the current directory.

The default file extension for export excel is .x1s if a file extension is not specified.

Quick start

Check the contents of Excel file mydata.x1ls before importing
import excel mydata, describe

As above, but for mydata.xlsx
import excel mydata.xlsx, describe

Load data from mydata.xls
import excel mydata

As above, but load data from cells A1:G10 of mysheet
import excel mydata, cellrange(A1:G10) sheet(mysheet)

Read first row as lowercase variable names
import excel mydata, firstrow case(lower)

Import only v1 and v2
import excel vl v2 using mydata

Save data in memory to mydata.xls
export excel mydata

As above, but export variables v1, v2, and v3
export excel vl v2 v3 using mydata

314

import excel — Import and export Excel files 315

Menu
import excel
File > Import > Excel spreadsheet (*.xls;*.xIsx)
export excel

File > Export > Data to Excel spreadsheet (*.xls;*.xIsx)

Syntax
Load an Excel file

import excel [using] filename [, import_excel_options}

Load subset of variables from an Excel file

import excel extvarlist using filename [, imporl_excel_options]

Describe contents of an Excel file

import excel [using] filename, describe

Save data in memory to an Excel file

export excel [using] filename [zf] [iﬂ [, export_excel_opti()ns}

Save subset of variables in memory to an Excel file

export excel [varlist] using filename [l_.f} [ln] [, export_excel_oplions]

import_excel _options Description
sheet ("sheetname") Excel worksheet to load
cellrange([start] [:end]) Excel cell range to load
firstrow treat first row of Excel data as variable names
case(preserve | lower | upper) preserve the case (the default) or read variable names
as lowercase or uppercase when using firstrow
allstring import all Excel data as strings
clear replace data in memory
locale("locale") specify the locale used by the workbook; has no effect on

Microsoft Windows

locale() does not appear in the dialog box.

316 import excel — Import and export Excel files

export_excel_options Description
Main
sheet ("sheetname") save to Excel worksheet
cell(start) start (upper-left) cell in Excel to begin saving to
sheetmodify modify Excel worksheet
sheetreplace replace Excel worksheet
firstrow(variables |varlabels) save variable names or variable labels to first row
nolabel export values instead of value labels
replace overwrite Excel file
Advanced
datestring("datetime_format") save dates as strings with a datetime_format
missing("repval") save missing values as repval
locale("locale") specify the locale used by the workbook; has no effect on

Microsoft Windows

locale() does not appear in the dialog box.

extvarlist specifies variable names of imported columns. An extvarlist is one or more of any of the
following:
varname
varname=columnname

Example: import excel make mpg weight price using auto.xlsx, clear imports columns
A, B, C, and D from the Excel file auto.x1sx.

Example: import excel make=A mpg=B price=D using auto.xlsx, clear imports columns
A, B, and D from the Excel file auto.xlsx. Column C and any columns after D are skipped.

Options for import excel

sheet ("sheetname") imports the worksheet named sheetname in the workbook. The default is to
import the first worksheet.

cellrange([start] [:end]) specifies a range of cells within the worksheet to load. start and end
are specified using standard Excel cell notation, for example, A1, BC2000, and C23.

firstrow specifies that the first row of data in the Excel worksheet consists of variable names. This
option cannot be used with extvarlist. firstrow uses the first row of the cell range for variable
names if cellrange() is specified. import excel translates the names in the first row to valid
Stata variable names. The original names in the first row are stored unmodified as variable labels.

case(preserve | lower |upper) specifies the case of the variable names read when using the
firstrow option. The default is case (preserve), meaning to preserve the variable name case.
Only ASCII letters in names are changed to uppercase or lowercase. Unicode characters beyond
ASCII range are not changed.

allstring forces import excel to import all Excel data as string data.

clear clears data in memory before loading data from the Excel workbook.

import excel — Import and export Excel files 317

The following option is available with import excel but is not shown in the dialog box:

locale("locale") specifies the locale used by the workbook. You might need this option when
working with extended ASCII character sets. This option has no effect on Microsoft Windows. The
default locale is UTF-8.

Options for export excel
Main

sheet ("sheetname") saves to the worksheet named sheetname. If there is no worksheet named
sheetname in the workbook, a new sheet named sheetname is created. If this option is not
specified, the first worksheet of the workbook is used.

cell(start) specifies the start (upper-left) cell in the Excel worksheet to begin saving to. By default,
export excel saves starting in the first row and first column of the worksheet.

sheetmodify exports data to the worksheet without changing the cells outside the exported range.
sheetmodify cannot be combined with sheetreplace or replace.

sheetreplace clears the worksheet before the data are exported to it. sheetreplace cannot be
combined with sheetmodify or replace.

firstrow(variables |varlabels) specifies that the variable names or the variable labels be saved
in the first row in the Excel worksheet. The variable name is used if there is no variable label for
a given variable.

nolabel exports the underlying numeric values instead of the value labels.

replace overwrites an existing Excel workbook. replace cannot be combined with sheetmodify
or sheetreplace.

Advanced

datestring("datetime_format") exports all datetime variables as strings formatted by date-
time_format. See [D] datetime display formats.

missing("repval") exports missing values as repval. repval can be either string or numeric. Without
specifying this option, export excel exports the missing values as empty cells.

The following option is available with export excel but is not shown in the dialog box:

locale("locale") specifies the locale used by the workbook. You might need this option when
working with extended ASCII character sets. The default locale is UTF-8.

Remarks and examples

To demonstrate the use of import excel and export excel, we will first load auto.dta and
export it as an Excel file named auto.x1s:
. use http://www.stata-press.com/data/r14/auto
(1978 Automobile Data)

. export excel auto, firstrow(variables)
file auto.xls saved

318

import excel — Import and export Excel files

Now we can import from the auto.x1s file we just created, telling Stata to clear the current data
from memory and to treat the first row of the worksheet in the Excel file as variable names:

import excel auto.xls, firstrow clear
. describe

Contains data

obs: 74

vars: 12

size: 3,922

storage display value

variable name type format label variable label
make stri7 %17s make
price int %10.0g price
mpg byte %10.0g mpg

rep78 byte %10.0g rep78
headroom double %10.0g headroom
trunk byte %10.0g trunk
weight int %10.0g weight
length int %10.0g length
turn byte %10.0g turn
displacement int %10.0g displacement
gear_ratio double %10.0g gear_ratio
foreign str8 %9s foreign
Sorted by:

Note: Dataset has changed since last saved.

We can also import a subrange of the cells in the Excel file:

import excel auto.xls, cellrange(:D70) firstrow clear
. describe

Contains data

obs: 69

vars: 4

size: 1,449

storage display value

variable name type format label variable label
make strl7 %17s make
price int %10.0g price
mpg byte %10.0g mpg
rep78 byte %10.0g rep78
Sorted by:

Note: Dataset has changed since last saved.

Both .x1s and .x1sx files are supported by import excel and export excel. If a file extension
is not specified with export excel, .x1s is assumed, because this format is more common and is
compatible with more applications that also can read from Excel files. To save the data in memory

as a

.x1sx file, specify the extension:

. use http://www.stata-press.com/data/ri4/auto, clear
(1978 Automobile Data)

. export excel auto.xlsx
file auto.xlsx saved

import excel — Import and export Excel files 319

To export a subset of variables and overwrite the existing auto.x1s Excel file, specify a variable
list and the replace option:

. export excel make mpg weight using auto, replace
file auto.xls saved

Q Technical note: Excel data size limits

For an Excel .xls-type workbook, the worksheet size limits are 65,536 rows by 256 columns.
The string size limit is 255 characters.

For an Excel .x1sx-type workbook, the worksheet size limits are 1,048,576 rows by 16,384
columns. The string size limit is 32,767 characters.
Q

Q Technical note: Dates and times

Excel has two different date systems, the “1900 Date System” and the “1904 Date System”. Excel
stores a date and time as an integer representing the number of days since a start date plus a fraction
of a 24-hour day.

In the 1900 Date System, the start date is 00Jan1900; in the 1904 Date System, the start date is
01Jan1904. In the 1900 Date System, there is another artificial date, 29feb1900, besides 00Jan1900.
import excel translates 29feb1900 to 28feb1900 and 00Jan1900 to 31dec1899.

See Using dates and times from other software in [D] datetime for a discussion of the relationship
between Stata datetimes and Excel datetimes.
a

Q Technical note: Mixed data types

Because Excel’s data type is cell based, import excel may encounter a column of cells with
mixed data types. In such a case, the following rules are used to determine the variable type in Stata
of the imported column.

e If the column contains at least one cell with nonnumerical text, the entire column is imported as
a string variable.

e If an all-numerical column contains at least one cell formatted as a date or time, the entire
column is imported as a Stata date or datetime variable. import excel imports the column as

a Stata date if all date cells in Excel are dates only; otherwise, a datetime is used.
Q

Video example

Import Excel data into Stata

http://www.youtube.com/watch?v=N5ZFgzN2_7c

320 import excel — Import and export Excel files

Stored results

import excel filename, describe stores the following in r():

Macros
r(N_worksheet) number of worksheets in the Excel workbook
r(worksheet_#) name of worksheet # in the Excel workbook
r(range_#) available cell range for worksheet # in the Excel workbook
References

Crow, K. 2012. Using import excel with real world data. The Stata Blog: Not Elsewhere Classified.
http://blog.stata.com/2012/06/25/using-import-excel-with-real-world-data/.

Jeanty, P. W. 2013. Dealing with identifier variables in data management and analysis. Stata Journal 13: 699-718.

Also see
[D] datetime — Date and time values and variables
[D] export — Overview of exporting data from Stata

[D] import — Overview of importing data into Stata

http://blog.stata.com/2012/06/25/using-import-excel-with-real-world-data/
http://blog.stata.com/2012/06/25/using-import-excel-with-real-world-data/
http://www.stata-journal.com/article.html?article=dm0071

Title

import haver — Import data from Haver Analytics databases

Description Quick start Menu

Syntax Options for import haver Options for import haver, describe
Option for set haverdir Remarks and examples Stored results

Acknowledgment Also see

Description

Haver Analytics (http://www.haver.com) provides economic and financial databases to which you
can purchase access. The import haver command allows you to use those databases with Stata.
The import haver command is provided only with Stata for Windows.

import haver seriesdblist loads data from one or more Haver databases into Stata’s memory.
import haver seriesdblist, describe describes the contents of one or more Haver databases.

If a database is specified without a suffix, then the suffix .dat is assumed.

Quick start

Describe available time span, frequency of measurement, and source of series E for net fixed assets
and consumer durables from the Haver Analytics CAPSTOCK database

import haver EQCAPSTOCK, describe

Load all available observations for quarterly series ASACX and ASAHS from the USIPLUS database
import haver (ASACX ASAHS)@US1PLUS

As above, but restrict data to the first quarter of 2000 through the fourth quarter of 2010
import haver (ASACX ASAHS)@US1PLUS, fin(2000q1,2010q94)

Menu

File > Import > Haver Analytics database

321

http://www.haver.com

322 import haver — Import data from Haver Analytics databases

Syntax

Load Haver data

import haver seriesdblist [, import_haver_oplions]

Load Haver data using a dataset that is loaded in memory

import haver, frommemory [import_haver_oplions]

Describe contents of Haver database

import haver seriesdblist, describe [import_huver_a'escribe_options]

Specity the directory where the Haver databases are stored

set haverdir "path" [, permanently]

import_haver_options

Description

fin([datestring} , [datestring])
fwithin([datestring] s [datestring])
tvar (varname)

case (lower | upper)

hmissing (misval)

aggmethod(strict | relaxed |force)

frommemory
clear

load data within specified date range

same as £in() but exclude the end points of range
create time variable varname

read variable names as lowercase or uppercase
record missing values as misval

set how temporal aggregation calculations deal with
missing data

load data using file in memory
clear data in memory before loading Haver database

frommemory and clear do not appear in the dialog box.

import_haver_describe _options

Description

*describe
detail

describe contents of seriesdblist
list full series information table for each series

saving(filename [, verbose replace}) save series information to filename .dta

*describe is required.

seriesdblist is one or more of the following:

dbfile
seriesQ@dbfile
(series series ...)@dbfile

import haver — Import data from Haver Analytics databases 323

where dbfile is the name of a Haver Analytics database and series contains a Haver Analytics series.
Wildcards 7 and * are allowed in series. series and dbfile are not case sensitive.

Example: import haver gdp@usecon
Import series GDP from the USECON database.

Example: import haver gdpQusecon c1*@ifs
Import series GDP from the USECON database, and import any series that starts with cl1 from the
IFS database.

Note: You must specify a path to the database if you did not use the set haverdir command.
Example: import haver gdp@"C:\data\usecon" c1*@"C:\data\ifs"

If you do not specify a path to the database and you did not set haverdir, then import haver
will look in the current working directory for the database.

Options for import haver

fin([datestring} R [datestring]) specifies the date range of the data to be loaded. datestring must
adhere to the Stata default for the different frequencies. See [D] datetime display formats.
Examples are 23mar2012 (daily and weekly), 2000m1 (monthly), 20034 (quarterly), and 1998
(annual). £in(1jan1999, 31dec1999) would mean from and including 1 January 1999 through
31 December 1999. Note that weekly data must be specified as daily data because Haver-week
data are conceptually different than Stata-week data.

fin() also determines the aggregation frequency. If you want to retrieve data in a frequency that
is lower than the one in which the data are stored, specify the dates in option £in() accordingly.
For example, to retrieve series that are stored in quarterly frequency into an annual dataset, you
can type £in(1980,2010).

fwithin([datestring] s [datestring}) functions the same as £in() except that the endpoints of the
range will be excluded in the loaded data.

tvar (varname) specifies the name of the time variable Stata will create. The default is tvar (time).
The tvar() variable is the name of the variable that you would use to tsset the data after
loading, although doing so is unnecessary because import haver automatically tssets the data

for you.

case(lower |upper) specifies the case of the variable names after import. The default is
case(lower).

hmissing(misval) specifies which of Stata’s 27 missing values (., .a, ..., .2z) to record when there

are missing values in the Haver database.

Two kinds of missing values occur in Haver databases. The first occurs when nothing is recorded
because the data do not span the entire range; these missing values are always stored as . by Stata.
The second occurs when Haver has recorded a Haver missing value; by default, these are stored as
. by Stata, but you can use hmissing() to specify that a different extended missing-value code
be used.

aggmethod(strict | relaxed | force) specifies a method of temporal aggregation in the presence
of missing observations. aggmethod (strict) is the default aggregation method.

Most Haver series of higher than annual frequency has an aggregation type that determines how
data can be aggregated. The three aggregation types are average (AVG), sum (SUM), and end of
period (EOP). Each aggregation method behaves differently for each aggregation type.

324 import haver — Import data from Haver Analytics databases

An aggregated span is a time period expressed in the original frequency. The goal is to aggregate
the data in an aggregation span to a single observation in the (lower) target frequency. For example,
1973m1-1973m3 is an aggregated span for quarterly aggregation to 1973ql.

strict aggregation method:

1) (Average) The aggregated value is the average value if no observation in the aggregated span
is missing; otherwise, the aggregated value is missing.

2) (Sum) The aggregated value is the sum if no observation in the aggregated span is missing;
otherwise, the aggregated value is missing.

3) (End of period) The aggregated value is the series value in the last period in the aggregated
span, be it missing or not.

relaxed aggregation method:

1) (Average) The aggregated value is the average value as long as there is one nonmissing data
point in the aggregated span; otherwise, the aggregated value is missing.

2) (Sum) The aggregated value is the sum if no observation in the aggregated span is missing;
otherwise, the aggregated value is missing.

3) (End of period) The aggregated value is the last available nonmissing data point in the
aggregated span; otherwise, the aggregated value is missing.

force aggregation method:

1) (Average) The aggregated value is the average value as long as there is one nonmissing data
point in the aggregated span; otherwise, the aggregated value is missing.

2) (Sum) The aggregated value is the sum if there is at least one nonmissing data point in the
aggregated span; otherwise, the aggregated value is missing.

3) (End of period) The aggregated value is the last available nonmissing data point in the
aggregated span; otherwise, the aggregated value is missing.
The following options are available with import haver but are not shown in the dialog box:

frommemory specifies that each observation of the dataset in memory specifies the information for a
Haver series to be imported. The dataset in memory must contain variables named path, file,
and series. The observations in path specify paths to Haver databases, the observations in file
specify Haver databases, and the observations in series specify the series to import.

clear clears the data in memory before loading the Haver database.

Options for import haver, describe

describe describes the contents of one or more Haver databases.
detail specifies that a detailed report of all the information available on the variables be presented.

saving (filename [, verbose replace]) saves the series meta-information to a Stata dataset. By
default, the series meta-information is not displayed to the Results window, but you can use the
verbose option to display it.

saving() saves a Stata dataset that can subsequently be used with the frommemory option.

import haver — Import data from Haver Analytics databases 325

Option for set haverdir

permanently specifies that in addition to making the change right now, the haverdir setting be
remembered and become the default setting when you invoke Stata.

Remarks and examples

Remarks are presented under the following headings:

Installation

Setting the path to Haver databases
Download example Haver databases
Determining the contents of a Haver database
Loading a Haver database

Loading a Haver database from a describe file
Temporal aggregation

Daily data

Weekly data

Installation

Haver Analytics (http://www.haver.com) provides more than 200 economic and financial databases
in the form of .dat files to which you can purchase access. The import haver command provides
easy access to those databases from Stata. import haver is provided only with Stata for Windows.

Setting the path to Haver databases

If you want to retrieve data from Haver Analytics databases, you must discover the directory in
which the databases are stored. This will most likely be a network location. If you do not know the
directory, contact your technical support staff or Haver Analytics (http://www.haver.com). Once you
have determined the directory location—for example, H: \haver_files—you can save it by using
the command

. set haverdir "H:\haver_files\", permanently

Using the permanently option will preserve the Haver directory information between Stata
sessions. Once the Haver directory is set, you can start retrieving data. For example, if you are
subscribing to the USECON database, you can type

. import haver gdpQ@usecon

to load the GDP series into Stata. If you did not use set haverdir, you would type

. import haver gdp@"H:\haver_files\usecon"

The directory path passed to set haverdir is saved in the creturn value c(haverdir). You
can view it by typing

. display "‘c(haverdir)’"

http://www.haver.com
http://www.haver.com

326 import haver — Import data from Haver Analytics databases

Download example Haver databases

There are three example Haver databases you can download to your working directory. Run the
copy commands below to download HAVERD, HAVERW, and HAVERMQA.

. copy http://www.stata.com/haver/HAVERD.DAT haverd.dat
. copy http://www.stata.com/haver/HAVERD.IDX haverd.idx
. copy http://www.stata.com/haver/HAVERW.DAT haverw.dat
. copy http://www.stata.com/haver/HAVERW.IDX haverw.idx
. copy http://www.stata.com/haver/HAVERMQA.DAT havermqa.dat
. copy http://www.stata.com/haver/HAVERMQA.IDX havermqga.idx

To use these files, you need to make sure your Haver directory is not set:

nn

. set haverdir

Determining the contents of a Haver database
import haver seriesdblist, describe displays the contents of a Haver database. If no series is
specified, then all series are described.

. import haver haverd, describe

Dataset: haverd

Variable Description Time span Frequency Source
FXTWB Nominal Broad Trade-W.. 03jan2005-02mar2012 Daily FRB
FXTWM Nominal Trade-Weighte.. 03jan2005-02mar2012 Daily FRB
FXTWOTP Nominal Trade-Weighte.. 03jan2005-02mar2012 Daily FRB
Summary

number of series described: 3
series not found: 0O

Above we describe the Haver database haverd.dat, which we already have on our computer and
in our current directory.

By default, each line of the output corresponds to one Haver series. Specifying detail displays
more information about each series, and specifying seriesname@ allows us to restrict the output to
the series that interests us:

. import haver FXTWBG@haverd, describe detail

FXTWB Nominal Broad Trade-Weighted Exchange Value of the US$ (1/97=100)
Frequency: Daily Time span: 03jan2005-02mar2012
Number of Observations: 1870 Date Modified: 07mar2012 11:27:33
Aggregation Type: AVG Decimal Precision: 4
Difference Type: 0 Magnitude: 0
Data Type: INDEX Group: RO3
Primary Geography Code: 111 Secondary Geography Code:
Source: FRB Source Description: Federal Reserv..
Summary

number of series described: 1
series not found: O

import haver — Import data from Haver Analytics databases 327

You can describe multiple Haver databases with one command:

import haver haverd haverw, describe
(output omitted)

To restrict the output to the series that interest us for each database, you could type

import haver (FXTWB FXTWOTP)@haverd FARVSNG@haverw, describe
(output omitted)

Loading a Haver database

import haver seriesdblist loads Haver databases. If no series is specified, then all series are
loaded.

import haver haverd, clear

Summary

Haver data retrieval: 10 Dec 2014 11:41:18
of series requested: 3

of database(s) used: 1 (HAVERD)

All series have been successfully retrieved

Frequency

highest Haver frequency: Daily
lowest Haver frequency: Daily
frequency of Stata dataset: Daily

The table produced by import haver seriesdblist displays a summary of the loaded data, frequency
information about the loaded data, series that could not be loaded because of errors, and notes about
the data.

The dataset now contains a time variable and three variables retrieved from the HAVERD database:

. describe

Contains data

obs: 1,870
vars: 4
size: 59,840
storage display value
variable name type format label variable label
time double %td
fxtwb_haverd double %10.0g Nominal Broad Trade-Weighted
Exchange Value of the US$
(1/97=100)
fxtwm_haverd double %10.0g Nominal Trade-Weighted Exch Value
of US$ vs Major Currencies
(3/73=100)
fxtwotp_haverd double %10.0g Nominal Trade-Weighted Exchange

Value of US$ vs OITP (1/97=100)

Sorted by: time
Note: Dataset has changed since last saved.

328

import haver — Import data from Haver Analytics databases

Haver databases include the following meta-information about each variable:

HaverDB database name

Series series name

DateTimeMod date/time the series was last modified

Frequency frequency of series (from daily to annual) as it is stored in the Haver database
Magnitude magnitude of the data

DecPrecision number of decimals to which the variable is recorded

DifType relevant within Haver software only: if =1, percentage calculations are not allowed
AggType temporal aggregation type (one of AVG, SUM, EOP)

DataType type of data (e.g., ratio, index, US$, %)

Group Haver series group to which the variable belongs

Geographyl primary geography code

Geography?2 secondary geography code

StartDate data start date

EndDate data end date

Source Haver code associated with the source for the data

SourceDescription description of Haver code associated with the source for the data

When a variable is loaded, this meta-information is stored in variable characteristics (see [P] char).

Those characteristics can be viewed using char list:

. char list fxtwb_haverd[]
fxtwb_haverd[HaverDB] :
fxtwb_haverd[Series]:
fxtwb_haverd[DateTimeMod] :
fxtwb_haverd [Frequency] :
fxtwb_haverd[Magnitude] :
fxtwb_haverd[DecPrecision]:
fxtwb_haverd[DifType] :
fxtwb_haverd[AggTypel :
fxtwb_haverd[DataType] :
fxtwb_haverd[Group] :
fxtwb_haverd[Geography1] :
fxtwb_haverd[StartDate]:
fxtwb_haverd[EndDate] :
fxtwb_haverd[Source]:

HAVERD
FXTWB
07mar2012 11:27:33
Daily

0

4

0

AVG

INDEX

RO3

111
03jan2005
02mar2012
FRB

fxtwb_haverd[SourceDescription]:

Federal Reserve Board

You can load multiple Haver databases/series with one command. To load the series FXTWB and
FXTWOTP from the HAVERD database and all series that start with V from the HAVERMQA database,

you would type

. import haver (FXTWB FXTWOTP)®haverd V*@havermga, clear

(output omitted)

import haver automatically tssets the data for you.

Loading a Haver database from a describe file

You often need to search through the series information of a Haver database(s) to see which series
you would like to load. You can do this by saving the output of import haver, describe to a
Stata dataset with the saving (filename) option. The dataset created can be used by import haver,
frommemory to load data from the described Haver database(s). For example, here we search through
the series information of database HAVERMQA.

import haver — Import data from Haver Analytics databases 329

. import haver havermqa, describe saving(my_desc_file)
(output omitted)

. use my_desc_file, clear
. describe

Contains data from my_desc_file.dta

obs: 161

vars: 8 10 Dec 2014 11:41
size: 19,642

storage display value

variable name type format label variable label
path stri %9s Path to Haver File
file str8 %9s Haver File Name
series str7 %9s Series Name
description str80 %80s Series Description
startdate str7 %9s Start Date
enddate str7 %9s End Date
frequency str9 %9s Frequency
source str3 %9s Source
Sorted by:

The resulting dataset contains information on the 164 series in HAVERMQA. Suppose that we want
to retrieve all monthly series whose description includes the word “Yield”. We need to keep only
the observations from our dataset where the frequency variable equals “Monthly” and where the
description variable contains “Yield”.

. keep if frequency=="Monthly" & strpos(description,"Yield")
(152 observations deleted)

To load the selected series into Stata, we type
. import haver, frommemory clear
Note: We must clear the described data in memory to load the selected series. If you do not

want to lose the changes you made to the description dataset, you must save it before using import
haver, frommemory.

Temporal aggregation

If you request series with different frequencies, the higher frequency data will be aggregated to the
lowest frequency. For example, if you request a monthly and a quarterly series, the monthly series
will be aggregated. In rare cases, a series cannot be aggregated to a lower frequency and so will not
be retrieved. A list of these series will be stored in r(noaggtype).

The options £in() and fwithin() are useful for aggregating series by hand.

Daily data

Haver’s daily frequency corresponds to Stata’s daily frequency. Haver’s daily data series are
business series for which business calendars are useful. See [D] datetime business calendars for
more information on business calendars.

330 import haver — Import data from Haver Analytics databases

Weekly data

Haver’s weekly data are also retrieved to Stata’s daily frequency. See [D] datetime business
calendars for more information on business calendars.

Stored results

import haver stores the following in r():

Scalars
r(k_requested) number of series requested
r (k_noaggtype) number of series dropped because of invalid aggregation type
r(k_nodisagg) number of series dropped because their frequency is lower than that of the output
dataset
r(k_notindata) number of series dropped because data were out of the date range specified in
fwithin() or £in()
r(k_notfound) number of series not found in the database
Macros
r(noaggtype) list of series dropped because of invalid aggregation type
r(nodisagg) list of series dropped because their frequency is lower than that of the output dataset
r(notindata) list of series dropped because data were out of the date range specified in fwithin()
or £in()
r (notfound) list of series not found in the database

import haver, describe stores the following in r():

Scalars
r(k_described) number of series described
r(k_notfound) number of series not found in the database
Macros
r(notfound) list of series not found in the database
Acknowledgment

import haver was written with the help of Daniel C. Schneider of the House of Finance at
Goethe University, Frankfurt, Germany.

Also see
[D] import — Overview of importing data into Stata
[D] import delimited — Import delimited text data
[D] odbe — Load, write, or view data from ODBC sources

[TS] tsset — Declare data to be time-series data

Title

import sasxport — Import and export datasets in SAS XPORT format

Description Quick start
Menu Syntax
Options for import sasxport Option for import sasxport, describe
Options for export sasxport Remarks and examples
Stored results Technical appendix
Also see
Description

import sasxport and export sasxport convert datasets from and to SAS XPORT Transport
format. The U.S. Food and Drug Administration uses SAS XPORT Transport format as the format for
datasets submitted with new drug and new device applications (NDAS).

To save the data in memory as a SAS XPORT Transport file, type

. export sasxport filename

although sometimes you will want to type

. export sasxport filename, rename

It never hurts to specify the rename option. In any case, Stata will create filename.xpt as an
XPORT file containing the data and, if needed, will also create formats.xpf—an additional XPORT
file—containing the value-label definitions. These files can be easily read into SAS.

To read a SAS XPORT Transport file into Stata, type

. import sasxport filename

Stata will read into memory the XPORT file filename .xpt containing the data and, if available, will
also read the value-label definitions stored in formats.xpf or FORMATS.xpf.

import sasxport, describe describes the contents of a SAS XPORT Transport file. The display is
similar to that produced by describe. To describe a SAS XPORT Transport file, type

. import sasxport filename, describe

If filename is specified without an extension, .xpt is assumed.

Quick start

Describe the contents of SAS XPORT Transport file mydata.xpt
import sasxport mydata, describe

Load the contents of mydata.xpt into memory
import sasxport mydata

As above, and ignore the accompanying SAS formats file formats.xpf
import sasxport mydata, novallabels

Save data in memory to mydata.xpt
export sasxport mydata

331

332 import sasxport — Import and export datasets in SAS XPORT format

As above, but rename variables to meet SAS XPORT restrictions
export sasxport mydata, rename

As above, and do not save value labels
export sasxport mydata, rename replace vallabfile(none)

Save v1, v2, and v3 to mydata.xpt where time variable tvar is equal to 2010
export sasxport vl v2 v3 using mydata if tvar==2010

Menu
import sasxport
File > Import > SAS XPORT

export sasxport
File > Export > SAS XPORT

import sasxport — Import and export datasets in SAS XPORT format 333

Syntax
Import SAS XPORT Transport file into Stata

import sasxport filename [, import_opzions]

Describe contents of SAS XPORT Transport file

import sasxport filename, describe [member(mbmame)}

Export data in memory to a SAS XPORT Transport file
export sasxport filename [lf] [zn] [, export_options]

export sasxport varlist using filename [l_'f] [zn] [, export_options]

import_options Description
Main
clear replace data in memory
novallabels ignore accompanying formats.xpf file if it exists
member (mbrname) member to use; seldom used
export_options Description
Main
rename rename variables and value labels to meet SAS XPORT restrictions
replace overwrite files if they already exist
vallabfile (xpf) save value labels in formats.xpf
vallabfile(sascode) save value labels in SAS command file
vallabfile(both) save value labels in formats.xpf and in a SAS command file
vallabfile(none) do not save value labels

Options for import sasxport

clear permits the data to be loaded, even if there is a dataset already in memory and even if that
dataset has changed since the data were last saved.

novallabels specifies that value-label definitions stored in formats.xpf or FORMATS.xpf not be
looked for or loaded. By default, if variables are labeled in filename . xpt, then import sasxport
looks for formats.xpf to obtain and load the value-label definitions. If the file is not found,
Stata looks for FORMATS . xpf. If that file is not found, a warning message is issued.

import sasxport can use only a formats.xpf or FORMATS.xpf file to obtain value-label
definitions. import sasxport cannot understand value-label definitions from a SAS command file.

member (mbrname) is a rarely specified option indicating which member of the .xpt file is to be
loaded. It is not used much anymore, but the original XPORT definition allowed multiple datasets
to be placed in one file. The member () option allows you to read these old files. You can obtain
a list of member names using import sasxport, describe. If member () is not specified—and
it usually is not—import sasxport reads the first (and usually only) member.

334 import sasxport — Import and export datasets in SAS XPORT format

Option for import sasxport, describe

Main

member (mbrname) is a rarely specified option indicating which member of the .xpt file is to be
described. See the description of the member () option for import sasxport directly above. If
member () is not specified, all members are described, one after the other. It is rare for an XPORT
file to have more than one member.

Options for export sasxport

Main

rename specifies that export sasxport may rename variables and value labels to attempt to meet
the SAS XPORT restrictions, which are that names be no more than eight bytes long and that there
be no distinction between uppercase and lowercase letters. Note that rename does not remove
characters beyond the normal ASCII range, such as most Unicode characters and all extended ASCII
characters. SAS may or may not support such characters in variable labels and value labels.

We recommend specifying the rename option. If this option is specified, any name violating the
restrictions is changed to a different but related name in the file. The name changes are listed.
The new names are used only in the file; the names of the variables and value labels in memory
remain unchanged.

If rename is not specified and one or more names violate the XPORT restrictions, an error message
will be issued and no file will be saved. The alternative to the rename option is that you can
rename variables yourself with the rename command:

. rename mylongvariablename myname

See [D] rename. Renaming value labels yourself is more difficult. The easiest way to rename
value labels is to use label save, edit the resulting file to change the name, execute the file by
using do, and reassign the new value label to the appropriate variables by using label values:

. label save mylongvaluelabel using myfile.do

. doedit myfile.do (change mylongvaluelabel to, say, mlvlab)
. do myfile.do

. label values myvar mlvlab

See [D] label and [R] do for more information about renaming value labels.

replace permits export sasxport to overwrite existing filename.xpt, formats.xpf, and file-
name . sas files.

vallabfile(xpf | sascode |both|none) specifies whether and how value labels are to be stored.
SAS XPORT Transport files do not really have value labels. Value-label definitions can be preserved
in one of two ways:

1. In an additional SAS XPORT Transport file whose data contain the value-label definitions
2. In a SAS command file that will create the value labels
export sasxport can create either or both of these files.

vallabfile(xpf), the default, specifies that value labels be written into a separate SAS XPORT
Transport file named formats.xpf. Thus export sasxport creates two files: filename.xpt,
containing the data, and formats.xpf, containing the value labels. No formats.xpf file is
created if there are no value labels.

import sasxport — Import and export datasets in SAS XPORT format 335

SAS users can easily use the resulting .xpt and .xpf XPORT files.

See http://www.sas.com/govedu/fda/macro.html for SAS-provided macros for reading the XPORT
files. The SAS macro fromexp () reads the XPORT files into SAS. The SAS macro toexp() creates
XPORT files. When obtaining the macros, remember to save the macros at SAS’s webpage as a
plain-text file and to remove the examples at the bottom.

If the SAS macro file is saved as C:\project\macros.mac and the files mydat.xpt and
formats.xpf created by export sasxport are in C:\project\, the following SAS commands
would create the corresponding SAS dataset and format library and list the data:

SAS commands
%include "C:\project\macros.mac" ;
%fromexp(C:\project, C:\project) ;
libname library ’C:\project’ ;

data _null_ ; set library.mydat ; put _all_ ; run ;
proc print data = library.mydat ;
quit ;

vallabfile(sascode) specifies that the value labels be written into a SAS command file,
filename . sas, containing SAS proc format and related commands. Thus export sasxport
creates two files: filename.xpt, containing the data, and filename.sas, containing the value
labels. SAS users may wish to edit the resulting filename . sas file to change the “libname datapath”
and “libname xptfile xport” lines at the top to correspond to the location that they desire. export
sasxport sets the location to the current working directory at the time export sasxport was
issued. No .sas file will be created if there are no value labels.

vallabfile(both) specifies that both the actions described above be taken and that three files be
created: filename .xpt, containing the data; formats.xpf, containing the value labels in XPORT
format; and filename . sas, containing the value labels in SAS command-file format.

vallabfile(none) specifies that value-label definitions not be saved. Only one file is created:
filename . xpt, which contains the data.

Remarks and examples

All users, of course, may use these commands to transfer data between SAS and Stata, but there
are limitations in the SAS XPORT Transport format, such as the eight-character limit on the names
of variables (specifying export sasxport’s rename option works around that). For a complete
listing of limitations and issues concerning the SAS XPORT Transport format, and an explanation
of how export sasxport and import sasxport work around these limitations, see Technical
appendix below. You may find it more convenient to use translation packages such as Stat/Transfer;
see http://www.stata.com/products/transfer.html.

Remarks are presented under the following headings:

Saving XPORT files for transferring to SAS
Determining the contents of XPORT files received from SAS
Using XPORT files received trom SAS

http://www.sas.com/govedu/fda/macro.html
http://www.stata.com/products/transfer.html

336 import sasxport — Import and export datasets in SAS XPORT format

Saving XPORT files for transferring to SAS

> Example 1
To save the current dataset in mydata.xpt and the value labels in formats.xpf, type
. export sasxport mydata

To save the data as above but automatically rename variable names and value labels that are too
long or are case sensitive, type

. export sasxport mydata, rename

To allow the replacement of any preexisting files, type

. export sasxport mydata, rename replace

To save the current dataset in mydata.xpt and the value labels in SAS command file mydata.sas
and to automatically rename variable names and value labels, type

. export sasxport mydata, rename vallab(sas)
To save the data as above but save the value labels in both formats.xpf and mydata.sas, type

. export sasxport mydata, rename vallab(both)

To not save the value labels at all, thus creating only mydata.zxpt, type

. export sasxport mydata, rename vallab(none)

d
Determining the contents of XPORT files received from SAS
> Example 2
To determine the contents of testdata.xpt, you might type
. import sasxport testdata, describe
d

Using XPORT files received from SAS

> Example 3

To read data from testdata.xpt and obtain value labels from formats.xpf (or FORMATS. xpf),
if the file exists, you would type

. import sasxport testdata

To read the data as above and discard any data in memory, type

. import sasxport testdata, clear

import sasxport — Import and export datasets in SAS XPORT format 337

Stored results

import sasxport, describe stores the following in r():

Scalars

r(N) number of observations r(size) size of data

r(k) number of variables r(n_members) number of members
Macros

r (members) names of members

Technical appendix

Technical details concerning the SAS XPORT Transport format and how export sasxport and
import sasxport handle issues regarding the format are presented under the following headings:

Al. Overview of SAS XPORT Transport format
A2. Implications for writing XPORT datasets from Stata
A3. Implications for reading XPORT datasets into Stata

A1. Overview of SAS XPORT Transport format

A SAS XPORT Transport file may contain one or more separate datasets, known as mem-
bers. It is rare for a SAS XPORT Transport file to contain more than one member. See
http://support.sas.com/techsup/technote/ts140.pdf for the SAS technical document describing the layout
of the SAS XPORT Transport file.

A SAS XPORT dataset (member) is subject to certain restrictions:
1. The dataset may contain only 9,999 variables.

2. The names of the variables and value labels may not be longer than eight characters and
are case insensitive; for example, myvar, Myvar, MyVar, and MYVAR are all the same name.

3. Variable labels may not be longer than 40 characters.
4. The contents of a variable may be numeric or string:

a. Numeric variables may be integer or floating but may not be smaller than 5.398e—
79 or greater than 9.046e+74, absolutely. Numeric variables may contain missing,
which may be ., ._, .a, .b, ..., .z.

b. String variables may not exceed 200 characters. String variables are recorded in a
“padded” format, meaning that, when variables are read, it cannot be determined
whether the variable had trailing blanks.

5. Value labels are not written in the XPORT dataset. Suppose that you have variable sex in
the data with values 0 and 1, and the values are labeled for gender (O=male, and 1=female).
When the dataset is written in SAS XPORT Transport format, you can record that the variable
label gender is associated with the sex variable, but you cannot record the association with
the value labels male and female.

Value-label definitions are typically stored in a second XPORT dataset or in a text file
containing SAS commands. You can use the vallabfile() option of export sasxport
to produce these datasets or files.

http://support.sas.com/techsup/technote/ts140.pdf

338 import sasxport — Import and export datasets in SAS XPORT format

Value labels and formats are recorded in the same position in an XPORT file, meaning that
names corresponding to formats used in SAS cannot be used. Thus value labels may not be
named

best, binary, comma, commax, d, date, datetime, dateampm, day, ddmmyy,
dollar, dollarx, downame, e, eurdfdd, eurdfde, eurdfdn, eurdfdt, eu-
rdfdwn, eurdfmn, eurdfmy, eurdfwdx, eurdfwkx, float, fract, hex, hhmm,
hour, ib, ibr, ieee, julday, julian, percent, minguo, mmddyy, mmss, mmyy,
monname, month, monyy, negparen, nengo, numx, octal, pd, pdjulg, pdjuli,
pib, pibr, pk, pvalue, qtr, qtrr, rb, roman, s370ff, s370fib, s370fibu,
s370fpd, s370fpdu, s370fpib, s370frb, s370fzd, s370fzdl, s370fzds,
s370fzdt, s370fzdu, ssn, time, timeampm, tod, weekdate, weekdatx, week-
day, worddate, worddatx, wordf, words, year, yen, yymm, yymmdd, yymon,
yya, yyar, z, zd, or any uppercase variation of these.

We refer to this as the “Known Reserved Word List” in this documentation. Other words
may also be reserved by SAS; the technical documentation for the SAS XPORT Transport
format provides no guidelines. This list was created by examining the formats defined in
SAS Language Reference: Dictionary, Version 8. If SAS adds new formats, the list will grow.

6. A flaw in the XPORT design can make it impossible, in rare instances, to determine the exact
number of observations in a dataset. This problem can occur only if 1) all variables in the
dataset are string and 2) the sum of the lengths of all the string variables is less than 80.
Actually, the above is the restriction, assuming that the code for reading the dataset is written
well. If it is not, the flaw could occur if 1) the last variable or variables in the dataset are
string and 2) the sum of the lengths of all variables is less than 80.

To prevent stumbling over this flaw, make sure that the last variable in the dataset is not a
string variable. This is always sufficient to avoid the problem.

7. There is no provision for saving the Stata concepts notes and characteristics.

A2. Implications for writing XPORT datasets from Stata

Stata datasets for the most part fit well into the SAS XPORT Transport format. With the same
numbering scheme as above,

1. Stata refuses to write the dataset if it contains more than 9,999 variables.

2. Stata issues an error message if any variable or label name violates the naming restrictions,
or if the rename option is specified, Stata fixes any names that violate the restrictions.

Whether or not rename is specified, names will be recorded case insensitively: you do not
have to name all your variables with all lowercase or all uppercase letters. Stata verifies
that ignoring case does not lead to problems, complaining or, if option rename is specified,
fixing them.

3. Stata truncates variable labels to 40 characters to fit within the XPORT limit.
4. Stata treats variable contents as follows:

a. If a numeric variable records a value greater than 9.046e+74 in absolute value,
Stata issues an error message. If a variable records a value less than 5.398e-79 in
absolute value, 0 is written.

b. If you have string variables longer than 200 characters, Stata issues an error message.
Also, if any string variable has trailing blanks, Stata issues an error message. To
remove trailing blanks from string variable s, you can type

import sasxport — Import and export datasets in SAS XPORT format 339

. replace s = rtrim(s)

To remove leading and trailing blanks, type

. replace s = trim(s)

5. Value-label names are written in the XPORT dataset. The contents of the value label are not
written in the same XPORT dataset. By default, formats.xpf, a second XPORT dataset, is
created containing the value-label definitions.

SAS recommends creating a formats.xpf file containing the value-label definitions (what
SAS calls format definitions). They have provided SAS macros, making the reading of .xpt
and formats.xpf files easy. See http://www.sas.com/govedu/fda/macro.html for details.

Alternatively, a SAS command file containing the value-label definitions can be produced.
The vallabfile() option of export sasxport is used to indicate which, if any, of the
formats to use for recording the value-label definitions.

If a value-label name matches a name on the Known Reserved Word List, and the rename
option is not specified, Stata issues an error message.

If a variable has no value label, the following format information is recorded:

Stata format SAS format
%td. .. MMDDYY10.
%-td. .. MMDDYY10.
%#s $CHAR#.
%—#s $CHAR#.
% #s $CHAR#.
all other BEST12.

6. If you have a dataset that could provoke the XPORT design flaw, a warning message is issued.
Remember, the best way to avoid this flaw is to ensure that the last variable in the dataset
is numeric. This is easily done. You could, for instance, type

. generate ignoreme = 0

. export sasxport ...

7. Because the XPORT file format does not support notes and characteristics, Stata ignores
them when it creates the XPORT file. You may wish to incorporate important notes into the
documentation that you provide to the user of your XPORT file.

A3. Implications for reading XPORT datasets into Stata

Reading SAS XPORT Transport format files into Stata is easy, but sometimes there are issues to
consider:

1. If there are too many variables, Stata issues an error message. If you are using Stata/MP
or Stata/SE, you can increase the maximum number of variables with the set maxvar
command; see [D] memory.

2. The XPORT format variable naming restrictions are more restrictive than those of Stata, so
no problems should arise. However, Stata reserves the following names:
—all, _b, byte, _coef, _cons, double, float, if, in, int, long, _n, _N, _pi,
_pred, _rc, _skip, str#, strL, using, with

http://www.sas.com/govedu/fda/macro.html

340 import sasxport — Import and export datasets in SAS XPORT format

7.

Also see

If the XPORT file contains variables with any of these names, Stata issues an error message.
Also, the error message

. import sasxport ...
already defined

indicates that the XPORT file was incorrectly prepared by some other software and that two
or more variables share the same name.

The XPORT variable-label-length limit is more restrictive than that of Stata, so no problems
can arise.

Variable contents may cause problems:

a. The range of numeric variables in an XPORT dataset is a subset of that allowed by
Stata, so no problems can arise. All variables are brought back as doubles; we
recommend that you run compress after loading the dataset:

. import sasxport ...
. compress

See [D] compress.

Stata has no missing-value code corresponding to . _. If any value records . _, then
.u is stored.

b. String variables are brought back as recorded but with all trailing blanks stripped.

Value-label names are read directly from the XPORT dataset. Any value-label definitions are
obtained from a separate XPORT dataset, if available. If a value-label name matches any in
the Known Reserved Word List, no value-label name is recorded, and instead, the variable
display format is set to %9.0g, %#10.0g, or %td.

The %td Stata format is used when the following SAS formats are encountered:

DATE, EURDFDN, JULDAY, MONTH, QTRR, YEAR, DAY, EURDFDWN, JULIAN, MONYY,
WEEKDATE, YYMM, DDMMYY, EURDFMN, MINGUO, NENGO, WEEKDATX, YYMMDD, DOW-
NAME, EURDFMY, MMDDYY, PDJULG, WEEKDAY, YYMON, EURDFDD, EURDFWDX, MMYY,
PDJULI, WORDDATE, YYQ, EURDFDE, EURDFWKX, MONNAME, QTR, WORDDATX, YYQR

If the XPORT file indicates that one or more variables have value labels, import sasxport
looks for the value-label definitions in formats.xpf, another XPORT file. If it does not find
this file, it looks for FORMATS.xpf. If this file is not found, import sasxport issues a
warning message unless the novallabels option is specified.

Stata does not allow value-label ranges or string variables with value labels. If the .xpt file
or formats.xpf file contains any of these, an error message is issued. The novallabels
option allows you to read the data, ignoring all value labels.

If a dataset is read that provokes the all-strings XPORT design flaw, the dataset with the
minimum number of possible observations is returned, and a warning message is issued.
This duplicates the behavior of SAS.

SAS XPORT format does not allow notes or characteristics, SO no issues can arise.

[D] export — Overview of exporting data from Stata

[D] import — Overview of importing data into Stata

Title

infile (fixed format) — Read text data in fixed format with a dictionary

Description Quick start Menu Syntax
Options Remarks and examples References Also see

Description

infile using reads a dataset that is stored in text form. infile using does this by first reading
dfilename—a “dictionary” that describes the format of the data file—and then reads the file containing
the data. The dictionary is a file you create with the Do-file Editor or an editor outside Stata.

Strings containing plain ASCII or UTF-8 are imported correctly. Strings containing extended ASCII
will not be imported (that is, displayed) correctly; you can use Stata’s replace command with the
ustrfrom() function to convert extended ASCII to UTF-8. If ebcdic is specified, the data will be
converted from EBCDIC to ASCII as they are imported. The dictionary in all cases must be ASCII.

If using filename is not specified, the data are assumed to begin on the line following the closing
brace. If using filename is specified, the data are assumed to be located in filename.

The data may be in the same file as the dictionary or in another file. infile with a dictionary
can import both numeric and string data. Individual strings may be up to 100,000 bytes long. Strings
longer than 2,045 bytes are imported as strLs (see [U] 12.4.8 strL).

Another variation on infile omits the intermediate dictionary; see [D] infile (free format). This
variation is easier to use but will not read fixed-format files. On the other hand, although infile
with a dictionary will read free-format files, infile without a dictionary is even better at it.

An alternative to infile using for reading fixed-format files is infix; see [D] infix (fixed
format). infix provides fewer features than infile using but is easier to use.

Stata has other commands for reading data. If you are not certain that infile using will do
what you are looking for, see [D] import and [U] 21 Entering and importing data.

Quick start

For dictionary file mydata.dct that reads int-type v1 and str10-type v2

dictionary {
int vl
stri0 v2
}

Import data from mydata.raw with instructions for reading the data contained in dictionary file
mydata.dct

infile using mydata.dct, using(mydata.raw)

Same as above

infile using mydata, using(mydata)

As above, but import data from mydata.txt
infile using mydata, using(mydata.txt)

341

342 infile (fixed format) — Read text data in fixed format with a dictionary

As above, but read only the first 10 observations
infile using mydata in 1/10, using(mydata.txt)

Read only observations where catvar is equal to 4 or 5
infile using mydata if catvar==4 | catvar==5, using(mydata.txt)

Menu

File > Import > Text data in fixed format with a dictionary
Syntax
infile using dfilename [if] [in] [, options]

If dfilename is specified without an extension, .dct is assumed. If dfilename contains embedded
spaces, remember to enclose it in double quotes.

options Description
Main
using (filename) text dataset filename
clear replace data in memory
Options
automatic create value labels from nonnumeric data
ebcdic treat text dataset as EBCDIC

A dictionary is a text file that is created with the Do-file Editor or an editor outside Stata. This file
specifies how Stata should read fixed-format data from a text file. The syntax for a dictionary is

begin dictionary file
[infile] dictionary [using ﬁlename] {

* comments may be included freely

_lrecl(#)

_firstlineoffile (#)

_lines(#)

_line(#)
_newline[(#)}

_column (#)
_skip[(#)}

[type} varname [:lblname} [% infmt] ["variable label"]

(your data might appear here)

end dictionary file

where % infint is { %W[#[.-#]]{f|gle} | 4[#s | %[#S }

infile (fixed format) — Read text data in fixed format with a dictionary 343

Options
Main

using(filename) specifies the name of a file containing the data. If using() is not specified, the
data are assumed to follow the dictionary in dfilename, or if the dictionary specifies the name of
some other file, that file is assumed to contain the data. If using/(filename) is specified, filename
is used to obtain the data, even if the dictionary says otherwise. If filename is specified without
an extension, .raw is assumed.

If filename contains embedded spaces, remember to enclose it in double quotes.

clear specifies that it is okay for the new data to replace what is currently in memory. To ensure
that you do not lose something important, infile using will refuse to read new data if other
data are already in memory. clear allows infile using to replace the data in memory. You can
also drop the data yourself by typing drop _all before reading new data.

automatic causes Stata to create value labels from the nonnumeric data it reads. It also automatically
widens the display format to fit the longest label.

ebcdic specifies that the data be stored using EBCDIC character encoding rather than the default
ASCII encoding and that the data be converted from EBCDIC to ASCII as they are imported.

Dictionary directives

* marks comment lines. Wherever you wish to place a comment, begin the line with a *. Comments
can appear many times in the same dictionary.

_1recl(#) is used only for reading datasets that do not have end-of-line delimiters (carriage return,
line feed, or some combination of these). Such files are often produced by mainframe computers
and are either coded in EBCDIC or have been translated from EBCDIC into ASCIL. _1recl() specifies
the logical record length. _1recl() requests that infile act as if a line ends every # bytes.

_1recl() appears only once, and typically not at all, in a dictionary.

_firstlineoffile(#) (abbreviation _first()) is also rarely specified. It states the line of the file
where the data begin. You do not need to specify _first() when the data follow the dictionary;
Stata can figure that out for itself. However, you might specify _first() when reading data from
another file in which the first line does not contain data because of headers or other markers.

_first() appears only once, and typically not at all, in a dictionary.

_lines(#) states the number of lines per observation in the file. Simple datasets typically have
_lines(1). Large datasets often have many lines (sometimes called records) per observation.
_lines() is optional, even when there is more than one line per observation because infile
can sometimes figure it out for itself. Still, if _1ines(1) is not right for your data, it is best to
specify the correct number through _lines(#).

_lines() appears only once in a dictionary.

_line(#) tells infile to jump to line # of the observation. _1ine() is not the same as _lines().
Consider a file with _1ines(4), meaning four lines per observation. _line(2) says to jump to
the second line of the observation. _1ine(4) says to jump to the fourth line of the observation.
You may jump forward or backward. infile does not care, and there is no inefficiency in going
forward to _line(3), reading a few variables, jumping back to _line(1), reading another
variable, and jumping forward again to _line(3).

344 infile (fixed format) — Read text data in fixed format with a dictionary

You need not ensure that, at the end of your dictionary, you are on the last line of the observation.
infile knows how to get to the next observation because it knows where you are and it knows
_lines (), the total number of lines per observation.

_line() may appear many times in a dictionary.

_newline[(#)] is an alternative to _line(). _newline (1), which may be abbreviated _newline,
goes forward one line. _newline(2) goes forward two lines. We do not recommend using
_newline() because _line() is better. If you are currently on line 2 of an observation and want
to get to line 6, you could type _newline(4), but your meaning is clearer if you type _line(6).

_newline() may appear many times in a dictionary.

—_column(#) jumps to column # (in bytes) of the current line. You may jump forward or backward
within a line. _column() may appear many times in a dictionary.

_skip[(#)] jumps forward # columns on the current line. _skip() is just an alternative to _column().
_skip() may appear many times in a dictionary.

[type] varname [: Iblname] [, infmt] ["variable label"] instructs infile to read a variable. The simplest
form of this instruction is the variable name itself: varname.

At all times, infile is on some column of some line of an observation. infile starts on column
1 of line 1, so pretend that is where we are. Given the simplest directive, ‘varname’, infile goes
through the following logic:

If the current column is blank, it skips forward until there is a nonblank column (or until the
end of the line). If it just skipped all the way to the end of the line, it stores a missing value in
varname. If it skipped to a nonblank column, it begins collecting what is there until it comes to
a blank column or the end of the line. These are the data for varname. Then it sets the current
column to wherever it is.

The logic is a bit more complicated. For instance, when skipping forward to find the data, infile
might encounter a quote. If so, it then collects the characters for the data by skipping forward until
it finds the matching quote. If you specified a % infint, then infile skips the skipping-forward
step and simply collects the specified number of bytes. If you specified a %S infint, then infile
does not skip leading or trailing blanks. Nevertheless, the general logic is (optionally) skip, collect,
and reset.

Remarks and examples

Remarks are presented under the following headings:

Introduction

Reading free-format files

Reading fixed-format files

Numeric formats

String formats

Specifying column and line numbers
Examples of reading fixed-format files
Reading fixed-block files

Reading EBCDIC files

infile (fixed format) — Read text data in fixed format with a dictionary 345

Introduction

infile using follows a two-step process to read your data. You type something like infile
using descript, and

1. infile using reads the file descript.dct, which tells infile about the format of the data;
and

2. infile using then reads the data according to the instructions recorded in descript.dct.

descript.dct (the file could be named anything) is called a dictionary, and descript.dct is just
a text file that you create with the Do-file Editor or an editor outside Stata.

As for the data, they can be in the same file as the dictionary or in a different file. It does not
matter.

Reading free-format files

Another variation of infile for reading free-format files is described in [D] infile (free format).
We will refer to this variation as infile without a dictionary. The distinction between the two
variations is in the treatment of line breaks. infile without a dictionary does not consider them
significant. infile with a dictionary does.

A line, also known as a record, physical record, or physical line (as opposed to observations,
logical records, or logical lines), is a string of characters followed by the line terminator. If you were
to type the file, a line is what would appear on your screen if your screen were infinitely wide. Your
screen would have to be infinitely wide so that there would be no possibility that one line could take
more than one line of your screen, thus fooling you into thinking that there are multiple lines when
there is only one.

A logical line, on the other hand, is a sequence of one or more physical lines that represent one
observation of your data. infile with a dictionary does not spontaneously go to new physical lines;
it goes to a new line only between observations and when you tell it to. infile without a dictionary,
on the other hand, goes to a new line whenever it needs to, which can be right in the middle of an
observation. Thus consider the following little bit of data, which is for three variables:

54

193
2

How do you interpret these data?

Here is one interpretation: There are 3 observations. The first is 5, 4, and missing. The second
is 1, 9, and 3. The third is 2, missing, and missing. That is the interpretation that infile with a
dictionary makes.

Here is another interpretation: There are 2 observations. The first is 5, 4, and 1. The second is 9,
3, and 2. That is the interpretation that infile without a dictionary makes.

Which is right? You would have to ask the person who entered these data. The question is, are the
line breaks significant? Do they mean anything? If the line breaks are significant, you use infile
with a dictionary. If the line breaks are not significant, you use infile without a dictionary.

The other distinction between the two infiles is that infile with a dictionary does not
process comma-separated—value format. If your data are comma-separated, tab-separated, or otherwise
delimited, see [D] import delimited or [D] infile (free format).

346 infile (fixed format) — Read text data in fixed format with a dictionary

> Example 1: A simple dictionary with data

Outside Stata, we have typed into the file highway.dct information on the accident rate per
million vehicle miles along a stretch of highway, the speed limit on that highway, and the number of
access points (on-ramps and off-ramps) per mile. Our file contains

begin highway.dct, example 1
infile dictionary {
acc_rate spdlimit acc_pts
}
4.58 55 4.6
2.86 60 4.4
1.61 . 2.2
3.02 60 4.7

end highway.dct, example 1

This file can be read by typing the commands below. Stata displays the dictionary and reads the data:

. infile using highway
infile dictionary {
acc_rate spdlimit acc_pts

}

(4 observations read)
. list

acc_rate spdlimit acc_pts

1. 4.58 55 4.6
2. 2.86 60 4.4
3. 1.61 . 2.2
4. 3.02 60 4.7

> Example 2: Specifying variable labels

We can include variable labels in a dictionary so that after we infile the data, the data will be
fully labeled. We could change highway.dct to read

begin highway.dct, example 2

infile dictionary {

* This is a comment and will be ignored by Stata

* You might type the source of the data here.
acc_rate "Acc. Rate/Million Miles"
spdlimit "Speed Limit (mph)"
acc_pts "Access Pts/Mile"

}

4.58 55 4.6

2.86 60 4.4

1.61 . 2.2

3.02 60 4.7

end highway.dct, example 2

Now when we type infile using highway, Stata not only reads the data but also labels the
variables.

4

infile (fixed format) — Read text data in fixed format with a dictionary 347

> Example 3: Specifying variable storage types

We can indicate the variable types in the dictionary. For instance, if we wanted to store acc_rate
as a double and spdlimit as a byte, we could change highway.dct to read

begin highway.dct, example 3
infile dictionary {
* This is a comment and will be ignored by Stata
* You might type the source of the data here.
double acc_rate "Acc. Rate/Million Miles"
byte spdlimit "Speed Limit (mph)"
acc_pts "Access Pts/Mile"
}
4.58 55 4.6
2.86 60 4.4
1.61 . 2.2
3.02 60 4.7

end highway.dct, example 3

Because we do not indicate the variable type for acc_pts, it is given the default variable type float

(or the type specified by the set type command).
d

> Example 4: Reading string variables

By specifying the types, we can read string variables as well as numeric variables. For instance,

begin emp.dct
infile dictionary {
* data on employees

str20 name "Name"

age llAge"
int sex "Sex coded 0 male 1 female"

¥
"Lisa Gilmore" 25 1
Branton 32 1
’Bill Ross’ 27 O

end emp.dct

The strings can be delimited by single or double quotes, and quotes may be omitted altogether if the
string contains no blanks or other special characters.

4

> Example 5: Specifying value labels

You may attach value labels to variables in the dictionary by using the colon notation:

begin emp2.dct
infile dictionary {
* data on name, sex, and age

strl6 name "Name"
sex:sexlbl "Sex"
int age "Age"

X

"Arthur Doyle" Male 22
"Mary Hope" Female 37
"Guy Fawkes" Male 48
"Karen Cain" Female 25

end emp2.dct

348 infile (fixed format) — Read text data in fixed format with a dictionary

If you want the value labels to be created automatically, you must specify the automatic option
on the infile command. These data could be read by typing infile using emp2, automatic,
assuming the dictionary and data are stored in the file emp2.dct.

4

> Example 6: Separate the dictionary and data files

The data need not be in the same file as the dictionary. We might leave the highway data in
highway.raw and write a dictionary called highway.dct describing the data:

begin highway.dct, example 4
infile dictionary using highway {
* This dictionary reads the file highway.raw. If the
* file were called highway.txt, the first line would
* read "dictionary using highway.txt"
acc_rate "Acc. Rate/Million Miles"
spdlimit "Speed Limit (mph)"
acc_pts "Access Pts/Mile"

end highway.dct, example 4

» Example 7: Ignoring the top of a file

The firstlineoffile() directive allows us to ignore lines at the top of the file. Consider the
following raw dataset:

begin mydata.raw
The following data was entered by Marsha Martinez. It was checked by

Helen Troy.

id income educ sex age

1024 25000 HS Male 28

1025 27000 C Female 24

end mydata.raw

Our dictionary might read

begin mydata.dct
infile dictionary using mydata {

_first(4)

int id "Identification Number"

income "Annual income"

str2 educ "Highest educ level"

str6 sex

byte age

end mydata.dct

infile (fixed format) — Read text data in fixed format with a dictionary 349

> Example 8: Data spread across multiple lines

The _line() and _lines() directives tell Stata how to read our data when there are multiple
records per observation. We have the following in mydata2.raw:

id income educ sex age
1024 25000 HS
Male

28

1025 27000 C
Female

24

1035 26000 HS
Male

32

1036 25000 C
Female

25

begin mydata2.raw

end mydata2.raw

We can read this with a dictionary mydata2.dct, which we will just let Stata list as it simultaneously

reads the data:

. infile using mydata2, clear

infile dictionary using mydata2 {

_first(2) * Begin reading on line 2
_lines(3) * Each observation takes 3 lines.
int id "Identification Number" * Since _line is not specified, Stata
income "Annual income" * assumes that it is 1.
str2 educ "Highest educ level"
_line(2) * Go to line 2 of the observation.
str6 sex * (values for sex are located on line 2)
_line(3) * Go to line 3 of the observation.
int age * (values for age are located on line 3)
¥
(4 observations read)
. list
id income educ sex age
1. 1024 25000 HS Male 28
2. 1025 27000 C Female 24
3. 1035 26000 HS Male 32
4. 1036 25000 C Female 25

Here is the really good part: we read these variables in order, but that was not necessary. We could

just as well have used the dictionary:

infile dictionary using mydata2 {

_first(2)
_lines(3)
_line(1) int id
income
str2 educ
_1line(3) int age
_line(2) str6 sex

begin mydata2p.dct

"Identification number"
"Annual income"
"Highest educ level"

end mydata2p.dct

350 infile (fixed format) — Read text data in fixed format with a dictionary

We would have obtained the same results just as quickly, the only difference being that our variables
in the final dataset would be in the order specified: id, income, educ, age, and sex.

N

Q Technical note

You can use —newline to specify where breaks occur, if you prefer:

begin highway.dct, example 5
infile dictionary {

acc_rate "Acc. Rate/Million Miles"

spdlimit "Speed Limit (mph)"
newline acc_pts "Access Pts/Mile"

8 55

N B DY
0 O O

60

W N =

DRI

O N O -
[l =)

IS
~N N

end highway.dct, example 5

The line reading ‘1.61 .’ could have been read 1.61 (without the period), and the results would
have been unchanged. Because dictionaries do not go to new lines automatically, a missing value is
assumed for all values not found in the record.

a

Reading fixed-format files

Values in formatted data are sometimes packed one against the other with no intervening blanks.
For instance, the highway data might appear as

begin highway.raw, example 6
4.58554.6
2.86604.4
1.61 2.2
3.02604.7

end highway.raw, example 6

The first four columns of each record represent the accident rate; the next two columns, the speed
limit; and the last three columns, the number of access points per mile.

To read these data, you must specify the % infint in the dictionary. Numeric % infints are denoted
by a leading percent sign (%) followed optionally by a string of the form w or w.d, where w and d
stand for two integers. The first integer, w, specifies the width of the format. The second integer, d,
specifies the number of digits that are to follow the decimal point. d must be less than or equal to w.
Finally, a character denoting the format type (£, g, or e) is appended. For example, %9.2f specifies
an £ format that is nine characters wide and has two digits following the decimal point.

infile (fixed format) — Read text data in fixed format with a dictionary 351

Numeric formats

The £ format indicates that infile is to attempt to read the data as a number. When you do not
specify the % infint in the dictionary, infile assumes the %f format. The width, w, being missing
means that infile is to attempt to read the data in free format.

As it starts reading each observation, infile reads a record into its buffer and sets a column
pointer to 1, indicating that it is currently on the first column. When infile processes a %f format,
it moves the column pointer forward through white space. It then collects the characters up to the
next occurrence of white space and attempts to interpret those characters as a number. The column
pointer is left at the first occurrence of white space following those characters. If the next variable
is also free format, the logic repeats.

When you explicitly specify the field width w, as in %wf, infile does not skip leading white
space. Instead, it collects the next w characters starting at the column pointer and attempts to interpret
the result as a number. The column pointer is left at the old value of the column pointer plus w, that
is, on the first character following the specified field.

> Example 9: Specifying the width of fields

If the data above were stored in highway.raw, we could create the following dictionary to read
the data:

begin highway.dct, example 6
infile dictionary using highway {

acc_rate %4f "Acc. Rate/Million Miles"

spdlimit %2f "Speed Limit (mph)"

acc_pts %3f "Access Pts/Mile

end highway.dct, example 6

When we explicitly indicate the field width, infile does not skip intervening characters. The first
four columns are used for the variable acc_rate, the next two for spdlimit, and the last three for
acc_pts.

N

Q Technical note

The d specification in the %w.df indicates the number of implied decimal places in the data. For
instance, the string 212 read in a %3.2f format represents the number 2.12. Do not specify d unless
your data have elements of this form. The w alone is sufficient to tell infile how to read data in
which the decimal point is explicitly indicated.

When you specify d, Stata takes it only as a suggestion. If the decimal point is explicitly indicated
in the data, that decimal point always overrides the d specification. Decimal points are also not
implied if the data contain an E, e, D, or d, indicating scientific notation.

Fields are right-justified before implying decimal points. Thus ‘2 ’, 2 ’, and * 2’ are all read
as 0.2 by the %3.1f format.
a

352 infile (fixed format) — Read text data in fixed format with a dictionary

Q Technical note

The g and e formats are the same as the £ format. You can specify any of these letters interchangeably.
The letters g and e are included as a convenience to those familiar with Fortran, in which the e
format indicates scientific notation. For example, the number 250 could be indicated as 2.5E+02
or 2.5D+02. Fortran programmers would refer to this as an E7.5 format, and in Stata, this format
would be indicated as %7.5e. In Stata, however, you need specify only the field width w, so you
could read this number by using %7£, %7g, or %7e.

The g format is really a Fortran output format that indicates a freer format than f. In Stata, the
two formats are identical.

Throughout this section, you may freely substitute the g or e formats for the £ format.

Q Technical note

Be careful to distinguish between % fts and % infmts. %, fimts are also known as display formats—they
describe how a variable is to look when it is displayed; see [U] 12.5 Formats: Controlling how data
are displayed. 7, infints are also known as input formats—they describe how a variable looks when
you input it. For instance, there is an output date format, %td, but there is no corresponding input
format. (See [U] 24 Working with dates and times for recommendations on how to read dates.) For
the other formats, we have attempted to make the input and output definitions as similar as possible.
Thus we include g, e, and £ % infints, even though they all mean the same thing, because g, e, and
f are also % fints.

a

String formats

The s and S formats are used for reading strings. The syntax is %ws or %wS, where the w is
optional. If you do not specify the field width, your strings must either be enclosed in quotes (single
or double) or not contain any characters other than letters, numbers, and “_".

This may surprise you, but the s format can be used for reading numeric variables, and the f
format can be used for reading string variables! When you specify the field width, w, in the %wf
format, all embedded blanks in the field are removed before the result is interpreted. They are not
removed by the %ws format.

For instance, the %3f format would read “- 27, “-2 7, or “ -2” as the number —2. The %3s
format would not be able to read “~ 2” as a number, because the sign is separated from the digit,
but it could read “ -2” or “~2 ”. The %wf format removes blanks; datasets written by some Fortran
programs separate the sign from the number.

There are, however, some side effects of this practice. The string “2 2” will be read as 22 by a
%3£ format. Most Fortran compilers would read this number as 202. The %3s format would issue a
warning and store a missing value.

Now consider reading the string “a b” into a string variable. Using a %3s format, Stata will store
it as it appears: a b. Using a %3f format, however, it will be stored as ab—the middle blank will
be removed.

%wS is a special case of %ws. A string read with j%ws will have leading and trailing blanks
removed, but a string read with %wS will not have them removed.

Examples using the %s format are provided below, after we discuss specifying column and line
numbers.

infile (fixed format) — Read text data in fixed format with a dictionary 353

Specifying column and line numbers

—column() jumps to the specified column. For instance, the documentation of some dataset
indicates that the variable age is recorded as a two-digit number in column 47. You could read this
by coding

_column(47) age %2f

After typing this, you are now at column 49, so if immediately following age there were a one-digit
number recording sex as 0 or 1, you could code

_column(47) age %2f
sex %1f

or, if you wanted to be explicit about it, you could instead code

_column(47) age %2f
_column(49) sex %1f

It makes no difference. If at column 50 there were a one-digit code for race and you wanted to read
it but skip reading the sex code, you could code

_column(47) age %2f
_column(50) race %1f

You could equivalently skip forward using _skip():

_column(47) age %2f
_skip(1) race %1f

One advantage of column() over _skip is that it lets you jump forward or backward in a record.
If you wanted to read race and then age, you could code

_column(50) race %1f
_column(47) age %2f

If the data you are reading have multiple lines per observation (sometimes said as multiple records
per observation), you can tell infile how many lines per record there are by using _lines():

_lines(4)

_lines() appears only once in a dictionary. Good style says that it should be placed near the top
of the dictionary, but Stata does not care.

When you want to go to a particular line, include the _line() directive. In our example, let’s
assume that race, sex, and age are recorded on the second line of each observation:

_lines(4)

_line(2)
_column(47) age %2f
_column(50) race %1f

Let’s assume that id is recorded on line 1.

_lines(4)

_line(1)
_column(1) id %4f
_line(2)
_column(47) age %2f
_column(50) race %1f

354 infile (fixed format) — Read text data in fixed format with a dictionary

_line() works like _column() in that you can jump forward or backward, so these data could just
as well be read by

_lines(4)

_line(2)
_column(47) age %2f
_column(50) race %1f
_line(1)
_column(1) id %A4f

Remember that this dataset has four lines per observation, and yet we have never referred to 1ine (3)
or 1ine(4). That is okay. Also, at the end of our dictionary, we are on line 1, not line 4. That is
okay, too. infile will still get to the next observation correctly.

Q Technical note

Another way to move between records is —newline (). _newline() isto _line() as _skip() is
to _column (), which is to say, _newline () can only go forward. There is one difference: _skip()
has its uses, whereas _newline () is useful only for backward capability with older versions of Stata.

_skip() has its uses because sometimes we think in columns and sometimes we think in widths.
Some data documentation might include the sentence, “At column 54 are recorded the answers to the
25 questions, with one column allotted to each.” If we want to read the answers to questions 1 and
5, it would indeed be natural to code

_column(54) qi %1f
_skip(3)
q5 %1f

Nobody has ever read data documentation with the statement, “Demographics are recorded on record
2, and two records after that are the income values.” The documentation would instead say, “Record
2 contains the demographic information and record 4, income.” The _newline() way of thinking
is based on what is convenient for the computer, which does, after all, have to move past a certain
number of records. That, however, is no reason for making you think that way.

Before that thought occurred to us, Stata users specified _newline() to go forward a number
of records. They still can, so their old dictionaries will work. When you use _newline() and do
not specify _lines(), you must move past the correct number of records so that, at the end of the
dictionary, you are on the last record. In this mode, when Stata reexecutes the dictionary to process
the next observation, it goes forward one record.

a

Examples of reading fixed-format files

> Example 10: A file with two lines per observation

In this example, each observation occupies two lines. The first 2 observations in the dataset are

John Dunbar 10001 101 North 42nd Street
1010111111
Sam K. Newey Jr. 10002 15663 Roustabout Boulevard

0101000000

infile (fixed format) — Read text data in fixed format with a dictionary 355

The first observation tells us that the name of the respondent is John Dunbar; that his ID is 10001;
that his address is 101 North 42nd Street; and that his answers to questions 1-10 were yes, no, yes,
no, yes, yes, yes, yes, yes, and yes.

The second observation tells us that the name of the respondent is Sam K. Newey Jr.; that his ID
is 10002; that his address is 15663 Roustabout Boulevard; and that his answers to questions 1-10
were no, yes, no, yes, no, no, no, no, no, and no.

To see the layout within the file, we can temporarily add two rulers to show the appropriate
columns:

+ 1 t 2 + 3 + 4 t 5 + 6 + 7 + 8
John Dunbar 10001 101 North 42nd Street
1010111111
Sam K. Newey Jr. 10002 15663 Roustabout Boulevard
0101000000
+ 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8

Each observation in the data appears in two physical lines within our text file. We had to check in
our editor to be sure that there really were new-line characters (for example, “hard returns”) after
the address. This is important because some programs will wrap output for you so that one line may
appear as many lines. The two seemingly identical files will differ in that one has a hard return and
the other has a soft return added only for display purposes.

In our data, the name occupies columns 1-32; a person identifier occupies columns 33-37; and the
address occupies columns 40—80. Our worksheet revealed that the widest address ended in column 80.

The text file containing these data is called fname.txt. Our dictionary file looks like this:

begin fname.dct
infile dictionary using fname.txt {

*

* Example reading in data where observations extend across more

* than one line. The next line tells infile there are 2 lines/obs:

*

_lines(2)

*
str50 name %32s "Name of respondent"

_column(33) long id %5f "Person id"

_skip(2) strb0 addr #4ls "Address"

_line(2)

_column(1) byte ql %1t "Question 1"
byte q2 %1t "Question 2"
byte q3 h1f "Question 3"
byte q4 %1t "Question 4"
byte q5 Wif "Question 5"
byte q6 Wit "Question 6"
byte q7 %1t "Question 7"
byte q8 Wif "Question 8"
byte Q9 %1t "Question 9"
byte ql0 %1t "Question 10"

}

end fname.dct

Up to five pieces of information may be supplied in the dictionary for each variable: the location
of the data, the storage type of the variable, the name of the variable, the input format, and the
variable label.

Thus the str50 line says that the first variable is to be given a storage type of str50, called
name, and is to have the variable label “Name of respondent”. The %32s is the input format, which

356 infile (fixed format) — Read text data in fixed format with a dictionary

tells Stata how to read the data. The s tells Stata not to remove any embedded blanks; the 32 tells
Stata to go across 32 columns when reading the data.

The next line says that the second variable is to be assigned a storage type of long, named id,
and be labeled “Person id”. Stata should start reading the information for this variable in column 33.
The £ tells Stata to remove any embedded blanks, and the 5 says to read across five columns.

The third variable is to be given a storage type of str50, called addr, and be labeled “Address”.
The _skip(2) directs Stata to skip two columns before beginning to read the data for this variable,
and the %41s instructs Stata to read across 41 columns and not to remove embedded blanks.

line(2) instructs Stata to go to line 2 of the observation.

The remainder of the data is 0/1 coded, indicating the answers to the questions. It would be
convenient if we could use a shorthand to specify this portion of the dictionary, but we must supply
explicit directives.

N

Q Technical note

In the preceding example, there were two pieces of information about location: where the data
begin for each variable (the _column(), _skip(), _line()) and how many columns the data span
(the %32s, %5f, %41s, %1£f). In our dictionary, some of this information was redundant. After reading
name, Stata had finished with 32 columns of information. Unless instructed otherwise, Stata would
proceed to the next column—column 33 —to begin reading information about id. The _column(33)
was unnecessary.

The _skip(2) was necessary, however. Stata had read 37 columns of information and was ready
to look at column 38. Although the address information does not begin until column 40, columns 38
and 39 contain blanks. Because these are leading blanks instead of embedded blanks, Stata would
just ignore them without any trouble. The problem is with the %41s. If Stata begins reading the
address information from column 38 and reads 41 columns, Stata would stop reading in column 78
(78 — 41 + 1 = 38), but the widest address ends in column 80. We could have omitted the _skip(2)
if we had specified an input format of %43s.

The _1ine(2) was necessary, although we could have read the second line by coding _newline
instead.

The _column(1) could have been omitted. After the _line(), Stata begins in column 1.

See the next example for a dataset in which both pieces of location information are required.
a

infile (fixed format) — Read text data in fixed format with a dictionary 357

> Example 11: Manipulating the column pointer

The following file contains six variables in a variety of formats. In the dictionary, we read the
variables fifth and sixth out of order by forcing the column pointer.

infile dictionary {
double
_skip(2)

_column(21)
_column(18)

str4d

}
1.2125.7e+252abcd 1
1.3135.7 52efgh2
1.41457

.232

52abcd 3 100.
1.5155.7D+252efgh04 1.7
16 16 .57 b52abcd 5 1.71

begin example.dct

first W3t
second %2.1f
third %6£
fourth Y%4s
sixth %4.1f
fifth %2f

end example.dct

Assuming that the above is stored in a file called example.dct, we can infile and list it by

typing
. infile using example

infile dictionary {

first %3f
double second %2.1f
third %6£
_skip(2) strd fourth Y4s
_column(21) sixth %4.1f
_column(18) fifth %2f
}
(5 observations read)
. list
first second third fourth sixth fifth
1. 1.2 1.2 570 abcd .232 1
2. 1.3 1.3 5.7 efgh .5 2
3. 1.4 1.4 57 abcd 100 3
4. 1.5 1.5 570 efgh 1.7 4
5. 16 1.6 .57 abcd 1.71 5

Reading fixed-block files

Q Technical note

The _1recl (#) directive is used for reading datasets that do not have end-of-line delimiters (carriage
return, line feed, or some combination of these). Such datasets are typical of IBM mainframes, where
they are known as fixed block, or FB. The abbreviation LRECL is IBM mainframe jargon for logical

record length.

358 infile (fixed format) — Read text data in fixed format with a dictionary

In a fixed-block dataset, each # characters are to be interpreted as a record. For instance, consider
the data

In fixed-block format, these data might be recorded as

begin mydata.ibm
1 212 423 63

end mydata.ibm

and you would be told, on the side, that the LRECL is 4. If you then pass along that information to
infile, it can read the data:

begin mydata.dct
infile dictionary using mydata.ibm {

_lrecl(4)
int id
int age

end mydata.dct

When you do not specify the _1recl(#) directive, infile assumes that each line ends with the
standard text EOL delimiter (which can be a line feed, a carriage return, a line feed followed by a
carriage return, or a carriage return followed by a line feed). When you specify _lrecl(#), infile
reads the data in blocks of # characters and then acts as if that is a line.

A common mistake in processing fixed-block datasets is to use an incorrect LRECL value, such
as 160 when it is really 80. To understand what can happen, pretend that you thought the LRECL in
your data was 6 rather than 4. Taking the characters in groups of 6, the data appear as

1 212
423 63

Stata cannot verify that you have specified the correct LRECL, so if the data appear incorrect, verify
that you have the correct number.

The maximum LRECL infile allows is 524,275.

Reading EBCDIC files

In the previous section, we discussed the _lrecl (#) directive that is often necessary for files that
originated on mainframes and do not have end-of-line delimiters.

Such files sometimes are not even plain-text files. Sometimes, these files have an alternate character
encoding known as extended binary coded decimal interchange code (EBCDIC). The EBCDIC encoding
was created in the 1960s by IBM for its mainframes.

Because EBCDIC is a different character encoding, we cannot even show you a printed example;
it would be unreadable. Nevertheless, Stata can convert EBCDIC files to ASCII (see [D] filefilter) and
can read data from EBCDIC files.

infile (fixed format) — Read text data in fixed format with a dictionary 359

If you have a data file encoded with EBCDIC, you undoubtedly also have a description of it from
which you can create a dictionary that includes the LRECL of the file (EBCDIC files do not typically
have end-of-line delimiters) and the character positions of the fields in the file. You create a dictionary
for an EBCDIC file just as you would for a plain-text file, using the Do-file Editor or another text
editor, and being sure to use the _1recl() directive in the dictionary to specify the LRECL. You then
simply specify the ebcdic option for infile, and Stata will convert the characters in the file from
EBCDIC to ASCII on the fly:

. infile using mydict, ebcdic

References

Gleason, J. R. 1998. dm54: Capturing comments from data dictionaries. Stata Technical Bulletin 42: 3-4. Reprinted
in Stata Technical Bulletin Reprints, vol. 7, pp. 55-57. College Station, TX: Stata Press.

Gould, W. W. 1992. dm10: Infiling data: Automatic dictionary creation. Stata Technical Bulletin 9: 4-8. Reprinted
in Stata Technical Bulletin Reprints, vol. 2, pp. 28-34. College Station, TX: Stata Press.

Nash, J. D. 1994. dm19: Merging raw data and dictionary files. Stata Technical Bulletin 20: 3-5. Reprinted in Stata
Technical Bulletin Reprints, vol. 4, pp. 22-25. College Station, TX: Stata Press.

Also see
[D] infile (free format) — Read unformatted text data
[D] infix (fixed format) — Read text data in fixed format
[D] export — Overview of exporting data from Stata
[D] import — Overview of importing data into Stata

[U] 21 Entering and importing data

http://www.stata.com/products/stb/journals/stb42.pdf
http://www.stata.com/products/stb/journals/stb9.pdf
http://www.stata.com/products/stb/journals/stb20.pdf

Title

infile (free format) — Read unformatted text data

Description Quick start Menu
Syntax Options Remarks and examples
Also see

Description

infile reads into memory from a disk a dataset that is not in Stata format.

Here we discuss using infile to read free-format data, meaning datasets in which Stata does not
need to know the formatting information. Another variation on infile allows reading fixed-format
data; see [D] infile (fixed format). Yet another alternative is import delimited, which is easier
to use if your data are tab- or comma-separated and contain 1 observation per line. Stata has other
commands for reading data, too. If you are not certain that infile will do what you are looking
for, see [D] import and [U] 21 Entering and importing data.

After the data are read into Stata, they can be saved in a Stata-format dataset; see [D] save.

Quick start

Import unformatted text data from mydatal.raw and name the imported float variables v1, v2,
and v3

infile vl v2 v3 using mydatal

As above, but skip 1 variable in the original file between v1 and v2
infile v1 _skip(1) v2 v3 using mydatal

As above, and indicate that v1 is a byte variable, v2 is a string variable of length 30, and v3 is a
double variable

infile byte vl _skip(1) str30 v2 double v3 using mydatal

Also read v4 as a double
infile byte vl _skip(1) str30 v2 double(v3 v4) using mydatal

Import unformatted text data from mydata2.raw where 74 observations on v1, v2, and v3 are stored
in rows instead of columns

infile vl v2 v3 using mydata2, byvariable(74)

As above, but import mydata2.csv
infile vl v2 v3 using mydata2.csv, byvariable(74)

Menu

File > Import > Unformatted text data

360

infile (free format) — Read unformatted text data 361

Syntax
infile varlist [_skip[(#)] [varlist [_skip[(#)]]] } using filename [{f] [in]

[, options]

If filename is specified without an extension, .raw is assumed. If filename contains embedded spaces,
remember to enclose it in double quotes.

options Description
Main
clear replace data in memory
Options
automatic create value labels from nonnumeric data
byvariable (#) organize external file by variables; # is number of observations
Options
Main

clear specifies that it is okay for the new data to replace the data that are currently in memory. To
ensure that you do not lose something important, infile will refuse to read new data if data are
already in memory. clear allows infile to replace the data in memory. You can also drop the
data yourself by typing drop _all before reading new data.

automatic causes Stata to create value labels from the nonnumeric data it reads. It also automatically
widens the display format to fit the longest label.

byvariable (#) specifies that the external data file is organized by variables rather than by observations.
All the observations on the first variable appear, followed by all the observations on the second
variable, and so on. Time-series datasets sometimes come in this format.

Remarks and examples

This section describes infile features for reading data in free or comma-separated—value format.
Remarks are presented under the following headings:

Reading free-format data
Reading comma-separated data
Specifying variable types
Reading string variables
Skipping variables

Skipping observations

Reading time-series data

362 infile (free format) — Read unformatted text data

Reading free-format data

In free format, data are separated by one or more white-space characters—blanks, tabs, or new
lines (carriage return, line feed, or carriage-return/line feed combinations). Thus one observation may
span any number of lines.

Numeric missing values are indicated by single periods (*.”).

> Example 1

In the file highway.raw, we have information on the accident rate per million vehicle miles along
a stretch of highway, the speed limit on that highway, and the number of access points (on-ramps
and off-ramps) per mile. Our file contains

begin highway.raw, example 1
4.58 55 4.6

2.86 60 4.4

1.61 . 2.2

3.02 60

4.7

end highway.raw, example 1

We can read these data by typing

. infile acc_rate spdlimit acc_pts using highway
(4 observations read)

. list

acc_rate spdlimit acc_pts

1. 4.58 55 4.6
2. 2.86 60 4.4
3. 1.61 . 2.2
4. 3.02 60 4.7

The spacing of the numbers in the original file is irrelevant.

Q Technical note

Missing values need not be indicated by one period. The third observation on the speed limit is
missing in example 1. The raw data file indicates this by recording one period. Let’s assume, instead,
that the missing value was indicated by the word unknown. Thus the raw data file appears as

begin highway.raw, example 2
4.58 55 4.6

2.86 60 4.4

1.61 unknown 2.2

3.02 60

4.7

end highway.raw, example 2

Here is the result of infiling these data:

. infile acc_rate spdlimit acc_pts using highway
’unknown’ cannot be read as a number for spdlimit[3]
(4 observations read)

infile (free format) — Read unformatted text data 363

infile warned us that it could not read the word unknown, stored a missing, and then continued to
read the rest of the dataset. Thus aside from the warning message, results are unchanged.

Because not all packages indicate missing data in the same way, this feature can be useful when
reading data. Whenever infile sees something that it does not understand, it warns you, records a
missing, and continues. If, on the other hand, the missing values were recorded not as unknown but
as, say, 99, Stata would have had no difficulty reading the number, but it would also have stored 99
rather than missing. To convert such coded missing values to true missing values, see [D] mvencode.

a

Reading comma-separated data

In comma-separated—value format, data are separated by commas. You may mix comma-separated—
value and free formats. Missing values are indicated either by single periods or by multiple commas
that serve as placeholders, or both. As with free format, 1 observation may span any number of input
lines.

> Example 2

We can modify the format of highway.raw used in example 1 without affecting infile’s ability
to read it. The dataset can be read with the same command, and the results would be the same if the
file instead contained

begin highway.raw, example 3
4.58,55 4.6

2.86, 60,4.4

1.61,,2.2

3.02,60

4.7

end highway.raw, example 3

Specifying variable types

The variable names you type after the word infile are new variables. The syntax for a new
variable is

[type] new_varname [H label_name]

A full discussion of this syntax can be found in [U] 11.4 varlists. As a quick review, new variables
are, by default, of type float. This default can be overridden by preceding the variable name with
a storage type (byte, int, long, float, double, or str#) or by using the set type command. A
list of variables placed in parentheses will be given the same type. For example,

double (first_var second_var ... last_var)
causes first_var second_var ... last_var to all be of type double.

There is also a shorthand syntax for variable names with numeric suffixes. The varlist vari-var4
is equivalent to specifying varl var2 var3 var4.

364 infile (free format) — Read unformatted text data

> Example 3

In the highway example, we could infile the data acc_rate, spdlimit, and acc_pts and
force the variable spdlimit to be of type int by typing

. infile acc_rate int spdlimit acc_pts using highway, clear
(4 observations read)

We could force all variables to be of type double by typing

. infile double(acc_rate spdlimit acc_pts) using highway, clear
(4 observations read)

We could call the three variables v1, v2, and v3 and make them all of type double by typing

. infile double(v1-v3) using highway, clear
(4 observations read)

Reading string variables

By explicitly specifying the types, you can read string variables, as well as numeric variables.

> Example 4

Typing infile str20 name age sex using myfile would read

begin myfile.raw
"Sherri Holliday" 25 1

Branton 32 1

"Bill Ross" 27,0

begin myfile.raw

or even

begin myfile.raw, variation 2
’Sherri Holliday’ 25,1 "Branton" 32
1,’Bill Ross’, 27,0

end myfile.raw, variation 2

The spacing is irrelevant, and either single or double quotes may be used to delimit strings. The quotes
do not count when calculating the length of strings. Quotes may be omitted altogether if the string
contains no blanks or other special characters (anything other than letters, numbers, or underscores).

Typing

. infile str20 name age sex using myfile, clear
(3 observations read)

makes name a str20 and age and sex floats. We might have typed

. infile str20 name age int sex using myfile, clear
(3 observations read)

to make sex an int or

. infile str20 name int(age sex) using myfile, clear
(3 observations read)

to make both age and sex ints. q

infile (free format) — Read unformatted text data 365

Q Technical note

infile can also handle nonnumeric data by using value labels. We will briefly review value
labels, but you should see [U] 12.6.3 Value labels for a complete description.

A value label is a mapping from the set of integers to words. For instance, if we had a variable
called sex in our data that represented the sex of the individual, we might code O for male and 1 for
female. We could then just remember that every time we see a value of 0 for sex, that observation
refers to a male, whereas 1 refers to a female.

Even better, we could inform Stata that O represents males and 1 represents females by typing

. label define sexfmt O "Male" 1 "Female"

Then we must tell Stata that this coding scheme is to be associated with the variable sex. This is
typically done by typing

. label values sex sexfmt

Thereafter, Stata will print Male rather than O and Female rather than 1 for this variable.

Stata has the ability to turn a value label around. Not only can it go from numeric codes to words
such as “Male” and “Female”, it can also go from the words to the numeric code. We tell infile
the value label that goes with each variable by placing a colon (:) after the variable name and typing
the name of the value label. Before we do that, we use the 1abel define command to inform Stata
of the coding.

Let’s assume that we wish to infile a dataset containing the words Male and Female and that
we wish to store numeric codes rather than the strings themselves. This will result in considerable
data compression, especially if we store the numeric code as a byte. We have a dataset named
persons.raw that contains name, sex, and age:

begin persons.raw
"Arthur Doyle" Male 22

"Mary Hope" Female 37

"Guy Fawkes" Male 48

"Carrie House" Female 25

end persons.raw

Here is how we read and encode it at the same time:

. label define sexfmt O "Male" 1 "Female"

. infile str16 name sex:sexfmt age using persons
(4 observations read)

. list
name sex age
1. Arthur Doyle Male 22
2. Mary Hope Female 37
3. Guy Fawkes Male 48
4. Carrie House Female 25

366 infile (free format) — Read unformatted text data

The str16 in the infile command applies only to the name variable; sex is a numeric variable,
which we can prove by typing

. list, nolabel

name sex age
1. Arthur Doyle 0 22
2. Mary Hope 1 37
3. Guy Fawkes 0 48
4. Carrie House 1 25

Q Technical note

When infile is directed to use a value label and it finds an entry in the file that does not match
any of the codings recorded in the label, it prints a warning message and stores missing for the
observation. By specifying the automatic option, you can instead have infile automatically add
new entries to the value label.

Say that we have a dataset containing three variables. The first, region of the country, is a character
string; the remaining two variables, which we will just call varl and var2, contain numbers. We
have stored the data in a file called geog.raw:

begin geog.raw ——

"NE" 31.23 87.78
’NCntrl’ 29.52 98.92
South 29.62 114.69
West 28.28 218.92
NE 17.50 44 .33
NCntrl 22.51 55.21

end geog.raw —————

The easiest way to read this dataset is to type

. infile str6 region varl var2 using geog

making region a string variable. We do not want to do this, however, because we are practicing for
reading a dataset like this containing 20,000 observations. If region were numerically encoded and
stored as a byte, there would be a 5-byte saving per observation, reducing the size of the data by
100,000 bytes. We also do not want to bother with first creating the value label. Using the automatic
option, infile creates the value label automatically as it encounters new regions.

. infile byte region:regfmt varl var2 using geog, automatic clear
(6 observations read)

. list, sep(0)

region varl var2

NE 31.23 87.78
NCntrl 29.52 98.92
South 29.62 114.69
West 28.28 218.92
NE 17.5 44 .33
NCntrl 22.51 55.21

O O WN -

infile (free format) — Read unformatted text data 367

infile automatically created and defined a new value label called regfmt. We can use the label
list command to view its contents:
. label list regfmt
regfmt:
1 NE
2 NCntrl

3 South
4 West

The value label need not be undefined before we use infile with the automatic option. If the
value label regfmt had been previously defined as

. label define regfmt 2 "West"

the result of label 1list after the infile would have been

regfmt:
2 West
3 NE
4 NCntrl
5 South

The automatic option is convenient, but there is one reason for using it. Suppose that we had a
dataset containing, among other things, information about an individual’s sex. We know that the sex
variable is supposed to be coded male and female. If we read the data by using the automatic
option and if one of the records contains fmlae, then infile will blindly create a third sex rather
than print a warning.

a

Skipping variables

Specifying _skip instead of a variable name directs infile to ignore the variable in that location.
This feature makes it possible to extract manageable subsets from large disk datasets. A number of
contiguous variables can be skipped by specifying _skip (#), where # is the number of variables to
ignore.

> Example 5
In the highway example from example 1, the data file contained three variables: acc_rate,
spdlimit, and acc_pts. We can read the first two variables by typing
. infile acc_rate spdlimit _skip using highway
(4 observations read)
We can read the first and last variables by typing

. infile acc_rate _skip acc_pts using highway, clear
(4 observations read)

We can read the first variable by typing

. infile acc_rate _skip(2) using highway, clear
(4 observations read)

_skip may be specified more than once. If we had a dataset containing four variables—say, a, b,
c, and d—and we wanted to read just a and c, we could type infile a _skip ¢ _skip using
filename.

N

368 infile (free format) — Read unformatted text data

Skipping observations

Subsets of observations can be extracted by specifying if exp, which also makes it possible to
extract manageable subsets from large disk datasets. Do not, however, use the _variable _N in exp.
Use the in range qualifier to refer to observation numbers within the disk dataset.

> Example 6

Again referring to the highway example, if we type

. infile acc_rate spdlimit acc_pts if acc_rate>3 using highway, clear
(2 observations read)

only observations for which acc_rate is greater than 3 will be infiled. We can type

. infile acc_rate spdlimit acc_pts in 2/4 using highway, clear
(eof not at end of obs)
(3 observations read)

to read only the second, third, and fourth observations.

Reading time-series data

If you are dealing with time-series data, you may receive datasets organized by variables rather
than by observations. All the observations on the first variable appear, followed by all the observations
on the second variable, and so on. The byvariable(#) option specifies that the external data file is
organized in this way. You specify the number of observations in the parentheses, because infile
needs to know that number to read the data properly. You can also mark the end of one variable’s
data and the beginning of another’s data by placing a semicolon (“;”) in the raw data file. You may
then specify a number larger than the number of observations in the dataset and leave it to infile to

determine the actual number of observations. This method can also be used to read unbalanced data.
> Example 7

We have time-series data on 4 years recorded in the file time.raw. The dataset contains information
on year, amount, and cost, and is organized by variable:

begin time.raw
1980 1981 1982 1983

14 17 25 30

120 135 150

180

end time.raw

We can read these data by typing

. infile year amount cost using time, byvariable(4) clear
(4 observations read)

. list

year amount cost

1. 1980 14 120
2. 1981 17 135
3. 1982 25 150
4. 1983 30 180

infile (free format) — Read unformatted text data 369

If the data instead contained semicolons marking the end of each series and had no information for
amount in 1983, the raw data might appear as

1980 1981 1982 1983 ;

14 17 25 ;

120 135 150
180 ;

We could read these data by typing

. infile year amount cost using time, byvariable(100) clear
(4 observations read)

. list

year amount cost
1. 1980 14 120
2. 1981 17 135
3. 1982 25 150
4. 1983 . 180

N
Also see

[D] infile (fixed format) — Read text data in fixed format with a dictionary
[D] export — Overview of exporting data from Stata
[D] import — Overview of importing data into Stata

[U] 21 Entering and importing data

Title

infix (fixed format) — Read text data in fixed format

Description Quick start Menu Syntax Options
Remarks and examples Also see

Description

infix reads into memory from a disk dataset that is not in Stata format. infix requires that the
data be in fixed-column format. Note that the column is byte based. The number of columns means
the number of bytes in the file. The text file filename is treated as a stream of bytes, no encoding is
assumed. If string data is encoded as ASCII or UTF-8, it will be imported correctly.

In the first syntax, if using filenames is not specified on the command line and using filename is
not specified in the dictionary, the data are assumed to begin on the line following the closing brace.
infix reads the data in a two-step process. You first create a disk file describing how the data are
recorded. You tell infix to read that file—called a dictionary—and from there, infix reads the
data. The data can be in the same file as the dictionary or in a different file.

In its second syntax, you tell infix how to read the data right on the command line with no
intermediate file.

infile and import delimited are alternatives to infix. infile can also read data in fixed
format—see [D] infile (fixed format)—and it can read data in free format—see [D] infile (free
format). Most people think that infix is easier to use for reading fixed-format data, but infile has
more features. If your data are not fixed format, you can use import delimited; see [D] import
delimited. import delimited allows you to specify the source file’s encoding and then performs a
conversion to UTF-8 encoding during import. If you are not certain that infix will do what you are
looking for, see [D] import and [U] 21 Entering and importing data.

Quick start

Read v1 from columns 1 to 6 and v2 from column 7 using mydata.raw
infix vl 1-6 v2 7 using mydata

As above, but read v1 as a string variable
infix str vl 1-6 v2 7 using mydata

As above, but for 2-line records with v2 in column 1 of the second line
infix 2 lines 1: vl 1-6 2: v2 1 using mydata

As above, but for mydata.txt
infix 2 lines 1: vl 1-6 2: v2 1 using mydata.txt

As above, but with data beginning on line 3
infix 3 firstlineoffile 2 lines 1: vl 1-6 2: v2 1 using mydata.txt

As above, but with instructions for reading the data contained in dictionary file mydata.dct
infix using mydata, using(mydata.txt)

370

infix (fixed format) — Read text data in fixed format 371

Menu

File > Import > Text data in fixed format with a dictionary

Syntax
infix using dfilename [zf] [in] [, using(filenames) clear}
infix specifications using filename [zf] [in] [, clear]

If dfilename is specified without an extension, .dct is assumed. If dfilename contains embedded
spaces, remember to enclose it in double quotes. dfilename, if it exists, contains

begin dictionary file ————
infix dictionary [using ﬁlename] {
* comments preceded by asterisk may appear freely
specifications
¥
(your data might appear here)

end dictionary file ————
If filename is specified without an extension, .raw is assumed. If filename contains embedded spaces,
remember to enclose it in double quotes.
specifications is
firstlineoffile
lines
#:
/
[byte | int | float | long | double | str | varlist [#:|#[-#]

Options
Main

using(filenames) specifies the name of a file containing the data. If using() is not specified, the
data are assumed to follow the dictionary in dfilename, or if the dictionary specifies the name of
some other file, that file is assumed to contain the data. If using(filenames) is specified, filenames
is used to obtain the data, even if the dictionary says otherwise. If filenames is specified without
an extension, .raw is assumed. If filenames contains embedded spaces, remember to enclose it in
double quotes.

Is

clear specifies that it is okay for the new data to replace what is currently in memory. To ensure
that you do not lose something important, infix will refuse to read new data if data are already in
memory. clear allows infix to replace the data in memory. You can also drop the data yourself
by typing drop _all before reading new data.

372 infix (fixed format) — Read text data in fixed format

Specifications

firstlineoffile (abbreviation first) is rarely specified. It states the line of the file at which
the data begin. You need not specify first when the data follow the dictionary; infix can figure
that out for itself. You can specify first when only the data appear in a file and the first few
lines of that file contain headers or other markers.

first appears only once in the specifications.

lines states the number of lines per observation in the file. Simple datasets typically have “1
lines”. Large datasets often have many lines (sometimes called records) per observation. lines
is optional, even when there is more than one line per observation, because infix can sometimes
figure it out for itself. Still, if 1 1ines is not right for your data, it is best to specify the appropriate
number of lines.

lines appears only once in the specifications.

#: tells infix to jump to line # of the observation. Consider a file with 4 lines, meaning four
lines per observation. 2: says to jump to the second line of the observation. 4: says to jump
to the fourth line of the observation. You may jump forward or backward: infix does not care,
and there is no inefficiency in going forward to 3:, reading a few variables, jumping back to 1:,
reading another variable, and jumping back again to 3:.

You need not ensure that, at the end of your specification, you are on the last line of the observation.
infix knows how to get to the next observation because it knows where you are and it knows
lines, the total number of lines per observation.

#: may appear many times in the specifications.

/ is an alternative to #:. / goes forward one line. // goes forward two lines. We do not recommend
using / because #: is better. If you are currently on line 2 of an observation and want to get to
line 6, you could type ////, but your meaning is clearer if you type 6:.

/ may appear many times in the specifications.

[byte | int | float | long | double | str | varlist [#:]#[-#] instructs infix to read a variable
or, sometimes, more than one.

The simplest form of this is varname #, such as sex 20. That says that variable varname be read
from column # of the current line; that variable sex be read from column 20; and that here, sex
is a one-digit number.

varname #-#, such as age 21-23, says that varname be read from the column range specified;
that age be read from columns 21 through 23; and that here, age is a three-digit number.

You can prefix the variable with a storage type. str name 25-44 means to read the string variable
name from columns 25 through 44. Note that the string variable name consists of 44 —25+1 = 20
bytes. If you do not specify str, the variable is assumed to be numeric. You can specify the
numeric subtype if you wish. If you specify str, infix will automatically assign the appropriate
string variable type, str# or strL. Imported strings may be up to 100,000 bytes.

You can specify more than one variable, with or without a type. byte q1-q5 51-55 means read
variables q1, g2, q3, 94, and g5 from columns 51 through 55 and store the five variables as bytes.

Finally, you can specify the line on which the variable(s) appear. age 2:21-23 says that age is
to be obtained from the second line, columns 21 through 23. Another way to do this is to put
together the #: directive with the input-variable directive: 2: age 21-23. There is a difference,
but not with respect to reading the variable age. Let’s consider two alternatives:

1: str name 25-44 age 2:21-23 ql-95 51-55
1: str name 25-44 2: age 21-23 ql-g95 51-55

infix (fixed format) — Read text data in fixed format 373

The difference is that the first directive says that variables q1 through g5 are on line 1, whereas
the second says that they are on line 2.

When the colon is put in front, it indicates the line on which variables are to be found when we
do not explicitly say otherwise. When the colon is put inside, it applies only to the variable under
consideration.

Remarks and examples

Remarks are presented under the following headings:

Two ways to use infix

Reading string variables

Reading data with multiple lines per observation
Reading subsets of observations

Two ways to use infix

There are two ways to use infix. One is to type the specifications that describe how to read the
fixed-format data on the command line:

. infix acc_rate 1-4 spdlimit 6-7 acc_pts 9-11 wusing highway.raw

The other is to type the specifications into a file,

begin highway.dct, example 1
infix dictionary using highway.raw {

acc_rate 1-4

spdlimit 6-7

acc_pts 9-11

end highway.dct, example 1

and then, in Stata, type
. infix using highway.dct
The method you use makes no difference to Stata. The first method is more convenient if there are

only a few variables, and the second method is less prone to error if you are reading a big, complicated
file.

The second method allows two variations, the one we just showed—where the data are in another
file—and one where the data are in the same file as the dictionary:

begin highway.dct, example 2
infix dictionary {

acc_rate 1-4

spdlimit 6-7

acc_pts 9-11

.4

[o23N¢))

5
0

W= N
o o0 U
N~ O 0

@
SN

4
2.
04

end highway.dct, example 2

Note that in the first example, the top line of the file read infix dictionary using highway.raw,
whereas in the second, the line reads simply infix dictionary. When you do not say where the
data are, Stata assumes that the data follow the dictionary.

374 infix (fixed format) — Read text data in fixed format

> Example 1

So, let’s complete the example we started. We have a dataset on the accident rate per million
vehicle miles along a stretch of highway, the speed limit on that highway, and the number of access
points per mile. We have created the dictionary file, highway.dct, which contains the dictionary
and the data:

begin highway.dct, example 2
infix dictionary {

acc_rate 1-4

spdlimit 6-7

acc_pts 9-11

5 .4
0

Wk NS Y

o O 0 U,

N~ O 0
[0

(o]
Noed

4
2
0 4

end highway.dct, example 2

We created this file outside Stata by using an editor or word processor. In Stata, we now read the
data. infix lists the dictionary so that we will know the directives it follows:

. infix using highway
infix dictionary {
acc_rate 1-4
spdlimit 6-7
acc_pts 9-11
}

(4 observations read)
. list

acc_rate spdlimit acc_pts

1. 4.58 55 .46
2. 2.86 60 4.4
3. 1.61 . 2.2
4. 3.02 60 4.7

We simply typed infix using highway rather than infix using highway.dct. When we do not
specify the file extension, infix assumes that we mean .dct.

4

Reading string variables

When you do not say otherwise in your specification—either in the command line or in the
dictionary—infix assumes that variables are numeric. You specify that a variable is a string by
placing str in front of its name:

. infix id 1-6 str name 7-36 age 38-39 str sex 41 using employee.raw

or

begin employee.dct
infix dictionary using employee.raw {

id 1-6

str name 7-36
age 38-39
str sex 40

end employee.dct

infix (fixed format) — Read text data in fixed format 375

Reading data with multiple lines per observation

When a dataset has multiple lines per observation—sometimes called multiple records per
observation—you specify the number of lines per observation by using lines, and you specify
the line on which the elements appear by using #:. For example,

. infix 2 lines 1: id 1-6 str name 7-36 2: age 1-2 str sex 4 wusing emp2.raw

or
begin emp2.dct
infix dictionary using emp2.raw {
2 lines
1:
id 1-6
str name 7-36
2:
age 1-2
str sex 4

end emp2.dct

There are many different ways to do the same thing.

> Example 2

Consider the following raw data:

begin mydata.raw
id income educ / sex age / rcode, answers to questions 1-5
1024 25000 HS

Male 28

119503
1025 27000 C

Female 24

022113
1035 26000 HS

Male 32

110321
1036 25000 C

Female 25

131232

end mydata.raw

This dataset has three lines per observation, and the first line is just a comment. One possible method
for reading these data is

begin mydatal.dct
infix dictionary using mydata {
2 first
3 lines
1: id 1-4
income 6-10
str educ 12-13

2: str sex 6-11
int age 13-14
3: rcode 6

ql-q5 7-16

end mydatal.dct

376 infix (fixed format) — Read text data in fixed format

although we prefer

infix dictionary using mydata {

2 first

3 lines
id 1: 1-4
income 1: 6-10

str educ 1:12-13

str sex 2: 6-11
age 2:13-14
rcode 3: 6

ql-g5 3: 7-16

begin mydata2.dct

end mydata2.dct

Either method will read these data, so we will use the first and then explain why we prefer the second.

. infix using mydatal
infix dictionary using mydata {

2 first
3 lines
1: id 1-4
income 6-10
str educ 12-13
2: str sex 6-11
int age 13-14
3: rcode 6
ql-95 7-16
¥
(4 observations read)
. list in 1/2
id income educ sex age rcode ql 92 93 94 @b
1. 1024 25000 HS Male 28 1 1 9 5 0 3
2. 1025 27000 C Female 24 0 2 2 1 1 3

What is better about the second is that the location of each variable is completely documented on
each line—the line number and column. Because infix does not care about the order in which we
read the variables, we could take the dictionary and jumble the lines, and it would still work. For

instance,

infix dictionary using mydata {

2 first

3 lines
str sex 2: 6-11
rcode 3: 6
str educ 1:12-13
age 2:13-14
id 1: 1-4
ql-95 3: 7-16
income 1: 6-10

begin mydata3.dct

end mydata3.dct

infix (fixed format) — Read text data in fixed format 377

will also read these data even though, for each observation, we start on line 2, go forward to line 3,
jump back to line 1, and end up on line 1. It is not inefficient to do this because infix does not really
jump to record 2, then record 3, then record 1 again, etc. infix takes what we say and organizes it
efficiently. The order in which we say it makes no difference, except that the order of the variables
in the resulting Stata dataset will be the order we specify.

Here the reordering is senseless, but in real datasets, reordering variables is often desirable.
Moreover, we often construct dictionaries, realize that we omitted a variable, and then go back and
modify them. By making each line complete, we can add new variables anywhere in the dictionary
and not worry that, because of our addition, something that occurs later will no longer read correctly.

4

Reading subsets of observations

If you wanted to read only the information about males from some raw data file, you might type

. infix id 1-6 str name 7-36 age 38-39 str sex 41 using employee.raw
> if sex=="M"

If your specification was instead recorded in a dictionary, you could type

. infix using employee.dct if sex=="M"

In another dataset, if you wanted to read just the first 100 observations, you could type

. infix 2 lines 1: id 1-6 str name 7-36 2: age 1-2 str sex 4 wusing emp2.raw
> in 1/100

or if the specification was instead recorded in a dictionary and you wanted observations 101-573,
you could type

. infix using emp2.dct in 101/573

Also see
[D] infile (fixed format) — Read text data in fixed format with a dictionary
[D] export — Overview of exporting data from Stata
[D] import — Overview of importing data into Stata

[U] 21 Entering and importing data

Title

insobs — Add or insert observations

Description Menu Syntax Options
Remarks and examples Acknowledgment Also see

Description

insobs inserts new observations into the dataset. The number of new observations to insert is
specified by obs. This command is primarily used by the Data Editor and is of limited use in other
contexts. A more popular alternative for programmers is set obs; see [D] obs.

If option before (inspos) or after (inspos) is specified, the new observations are inserted into
the middle of the dataset, and the insert position is controlled by inspos. Note that inspos must be a
positive integer between 1 and the total number of observations _N. If the dataset is empty, before ()
and after () may not be specified.

Menu

Data > Create or change data > Add or insert observations

Syntax
Add new observations at the end of the dataset

insobs obs

Insert new observations into the middle of the dataset

insobs obs, before(inspos) | after (inspos)

Options
before (inspos) and after (inspos) inserts new observations before and after, respectively, inspos

into the dataset. These options are primarily used by the Data Editor and are of limited use in
other contexts. A more popular alternative for most users is order; see [D] order.

Remarks and examples
> Example 1

insobs can be useful for creating artificial datasets. For instance, if we wanted to create a new
dataset with 100 observations, we could type

378

insobs — Add or insert observations 379

. clear

. insobs 100
(100 observations added)

> Example 2

We are using auto.dta, but for our specific example, we need the dataset to have more observations
than those provided in this dataset. To solve this problem, we could type

. sysuse auto, clear
(1978 Automobile Data)

. insobs 10
(10 observations added)

Typing insobs without an option adds the observations at the end of the dataset. Say that instead
of the end, we wanted to add five new observations before observation 20. We would type

. sysuse auto, clear
(1978 Automobile Data)

. insobs 5, before(20)
(5 observations added)

Acknowledgment

This command was inspired by insob, which was written by Bas Straathof, Eindhoven University
of Technology, The Netherlands.

Also see
[D] edit — Browse or edit data with Data Editor

[D] obs — Increase the number of observations in a dataset

Title

input — Enter data from keyboard

Description Quick start Syntax Options
Remarks and examples Reference Also see

Description

input allows you to type data directly into the dataset in memory.

For most users, edit is a better way to add observations to the dataset because it automatically
adjusts the storage type of variables, if required, to accommodate new values.

Quick start

Create numeric v1, v2, and v3 and input data directly into Stata
input v1 v2 v3

As above, but create v1 and v2 as type int, v3 as type byte
input int (vl v2) byte v3

Add data on string v4 of length 10
input stril0 v4

Input data for all existing variables
input

As above, but add observations by typing strings associated with value labels of existing variables
instead of numeric data

input, label

Syntax

iﬂut [varlist} [, automatic label]

Options

automatic causes Stata to create value labels from the nonnumeric data it encounters. It also
automatically widens the display format to fit the longest label. Specifying automatic implies
label, even if you do not explicitly type the label option.

label allows you to type the labels (strings) instead of the numeric values for variables associated
with value labels. New value labels are not automatically created unless automatic is specified.

380

input — Enter data from keyboard 381

Remarks and examples

If no data are in memory, you must specify a varlist when you type input. Stata will then prompt
you to enter the new observations until you type end.

> Example 1

We have data on the accident rate per million vehicle miles along a stretch of highway, along with
the speed limit on that highway. We wish to type these data directly into Stata:
. input

nothing to input
r(104);

Typing input by itself does not provide enough information about our intentions. Stata needs to
know the names of the variables we wish to create.

. input acc_rate spdlimit

acc_rate spdlimit
1. 4.58 55
2. 2.86 60
3. 1.61 .
4. end

We typed input acc_rate spdlimit, and Stata responded by repeating the variable names and
prompting us for the first observation. We entered the values for the first two observations, pressing
Return after each value was entered. For the third observation, we entered the accident rate (1.61),
but we entered a period (.) for missing because we did not know the corresponding speed limit for
the highway. After entering data for the fourth observation, we typed end to let Stata know that there
were no more observations.

We can now list the data to verify that we have entered the data correctly:

. list

acc_rate spdlimit

1. 4.58 55
2. 2.86 60
3. 1.61

d

If you have data in memory and type input without a varlist, you will be prompted to enter more
information on all the variables. This continues until you type end.

> Example 2: Adding observations

We now have another observation that we wish to add to the dataset. Typing input by itself tells
Stata that we wish to add new observations:
. input

acc_rate spdlimit
4. 3.02 60
5. end

382 input — Enter data from keyboard

Stata reminded us of the names of our variables and prompted us for the fourth observation. We
entered the numbers 3.02 and 60 and pressed Return. Stata then prompted us for the fifth observation.
We could add as many new observations as we wish. Because we needed to add only 1 observation,
we typed end. Our dataset now has 4 observations.

d

You may add new variables to the data in memory by typing input followed by the names of the
new variables. Stata will begin by prompting you for the first observation, then the second, and so
on, until you type end or enter the last observation.

> Example 3: Adding variables
In addition to the accident rate and speed limit, we now obtain data on the number of access points
(on-ramps and off-ramps) per mile along each stretch of highway. We wish to enter the new data.

. input acc_pts

cc_pts

BN DD

a
.6
.4
.2
.7

B W N

When we typed input acc_pts, Stata responded by prompting us for the first observation. There
are 4.6 access points per mile for the first highway, so we entered 4.6. Stata then prompted us
for the second observation, and so on. We entered each of the numbers. When we entered the final
observation, Stata automatically stopped prompting us—we did not have to type end. Stata knows that
there are 4 observations in memory, and because we are adding a new variable, it stops automatically.

We can, however, type end anytime we wish, and Stata fills the remaining observations on the
new variables with missing. To illustrate this, we enter one more variable to our data and then list

the result:
. input junk
junk

1.1
2. 2
3. end
list

acc_rate spdlimit acc_pts junk
1. 4.58 55 4.6 1
2. 2.86 60 4.4 2
3. 1.61 . 2.2
4. 3.02 60 4.7

N

You can input string variables by using input, but you must remember to indicate explicitly that
the variables are strings by specifying the type of the variable before the variable’s name.

input — Enter data from keyboard 383

> Example 4: Inputting string variables

String variables are indicated by the types str# or strL. For str#, # represents the storage
length, or maximum length, in bytes of the variable. You can create variables up to str2045. You
can create strL variables of arbitrary length.

For text with only plain ASCII characters, the length in bytes is equivalent to the number of
characters displayed. For instance, a str4 variable has a maximum length of 4, meaning that it can
contain the strings a, ab, abc, and abcd, but not abcde. Unicode characters beyond the plain ASCII
range take 2, 3, or 4 bytes each. Thus the same str4 variable could contain the strings &, &b, and
abc, but not &bcd because & takes two bytes to store. If you are using input with strings containing
Unicode characters, you should allow extra room in your str# specification. See [U] 12.4.2 Handling
Unicode strings.

Strings shorter than the maximum length can be stored in the variable, but strings longer than the
maximum length cannot.

Although a str80 variable can store strings shorter than 80 characters, you should not make all
your string variables str80 because Stata allocates space for strings on the basis of their maximum
length. Thus doing so would waste the computer’s memory.

Let’s assume that we have no data in memory and wish to enter the following data:

. input strl6 name age str6 sex

name age sex
1. "Arthur Doyle" 22 male
2. "Mary Hope" 37 "female"
3. Guy Fawkes 48 male
’Fawkes’ cannot be read as a number
3. "Guy Fawkes" 48 male
4. "Kriste Yeager" 25 female
5. end

We first typed input str16 name age str6 sex, meaning that name is to be a str16 variable
and sex a str6 variable. Because we did not specify anything about age, Stata made it a numeric
variable.

Stata then prompted us to enter our data. On the first line, the name is Arthur Doyle, which we
typed in double quotes. The double quotes are not really part of the string; they merely delimit the
beginning and end of the string. We followed that with Mr. Doyle’s age, 22, and his sex, male.
We did not bother to type double quotes around the word male because it contained no blanks or
special characters. For the second observation, we typed the double quotes around female; it changed
nothing.

In the third observation, we omitted the double quotes around the name, and Stata informed us
that Fawkes could not be read as a number and reprompted us for the observation. When we omitted
the double quotes, Stata interpreted Guy as the name, Fawkes as the age, and 48 as the sex. This
would have been okay with Stata, except for one problem: Fawkes looks nothing like a number, so
Stata complained and gave us another chance. This time, we remembered to put the double quotes
around the name.

384 input — Enter data from keyboard

Stata was satisfied, and we continued. We entered the fourth observation and typed end. Here is
our dataset:

. list
name age sex
1. Arthur Doyle 22 male
2. Mary Hope 37 female
3. Guy Fawkes 48 male
4. Kriste Yeager 25 female

> Example 5: Specifying numeric storage types

Just as we indicated the string variables by placing a storage type in front of the variable name, we
can indicate the storage type of our numeric variables as well. Stata has five numeric storage types:
byte, int, long, float, and double. When you do not specify the storage type, Stata assumes that
the variable is a float. See the definitions of numbers in [U] 12 Data.

There are two reasons for explicitly specifying the storage type: to induce more precision or to
conserve memory. The default type float has plenty of precision for most circumstances because
Stata performs all calculations in double precision, no matter how the data are stored. If you were
storing nine-digit Social Security numbers, however, you would want to use a different storage type,
or the last digit would be rounded. long would be the best choice; double would work equally well,
but it would waste memory.

Sometimes you do not need to store a variable as float. If the variable contains only integers
between —32,767 and 32,740, it can be stored as an int and would take only half the space. If a
variable contains only integers between —127 and 100, it can be stored as a byte, which would take
only half again as much space. For instance, in example 4 we entered data for age without explicitly
specifying the storage type; hence, it was stored as a float. It would have been better to store it as
a byte. To do that, we would have typed

. input str16 name byte age str6 sex

name age sex
"Arthur Doyle" 22 male
"Mary Hope" 37 "female"
"Guy Fawkes" 48 male
"Kriste Yeager" 25 female
end

D WN -

Stata understands several shorthands. For instance, typing

. input int(a b) ¢

allows you to input three variables—a, b, and c—and makes both a and b ints and ¢ a float.
Remember, typing

input — Enter data from keyboard 385

. input int a b ¢

would make a an int but both b and ¢ floats. Typing

. input a long b double(c d) e

would make a a float, b a long, c and d doubles, and e a float.

Stata has a shorthand for variable names with numeric suffixes. Typing v1-v4 is equivalent to
typing v1 v2 v3 v4. Thus typing

. input int(vi-v4)

inputs four variables and stores them as ints.

Q Technical note

The rest of this section deals with using input with value labels. If you are not familiar with
value labels, see [U] 12.6.3 Value labels.

Value labels map numbers into words and vice versa. There are two aspects to the process. First,
we must define the association between numbers and words. We might tell Stata that 0 corresponds
to male and 1 corresponds to female by typing label define sexlbl O "male" 1 "female".
The correspondences are named, and here we have named the 0<»male 1<>female correspondence
sexlbl.

Next we must associate this value label with a variable. If we had already entered the data and
the variable were called sex, we would do this by typing label values sex sexlbl. We would
have entered the data by typing Os and 1s, but at least now when we 1ist the data, we would see
the words rather than the underlying numbers.

We can do better than that. After defining the value label, we can associate the value label with
the variable at the time we input the data and tell Stata to use the value label to interpret what we
type:

. label define sexlbl 0 "male" 1 "female"
. input str16 name byte(age sex:sexlbl), label
name age sex
"Arthur Doyle" 22 male
"Mary Hope" 37 "female"
"Guy Fawkes" 48 male

"Kriste Yeager" 25 female
end

O WN -

After defining the value label, we typed our input command. We added the label option at the
end of the command, and we typed sex:sex1bl for the name of the sex variable. The byte(...)
around age and sex:sexlbl was not really necessary; it merely forced both age and sex to be
stored as bytes.

Let’s first decipher sex:sex1bl. sex is the name of the variable we want to input. The :sexlbl
part tells Stata that the new variable is to be associated with the value label named sex1bl. The label
option tells Stata to look up any strings we type for labeled variables in their corresponding value
label and substitute the number when it stores the data. Thus when we entered the first observation
of our data, we typed male for Mr. Doyle’s sex, even though the corresponding variable is numeric.
Rather than complaining that “"male" could not be read as a number”, Stata accepted what we typed,
looked up the number corresponding to male, and stored that number in the data.

386 input — Enter data from keyboard

That Stata has actually stored a number rather than the words male or female is almost irrelevant.
Whenever we list the data or make a table, Stata will use the words male and female just as if
those words were actually stored in the dataset rather than their numeric codings:

. list
name age sex
1. Arthur Doyle 22 male
2. Mary Hope 37 female
3. Guy Fawkes 48 male
4. Kriste Yeager 25 female
. tabulate sex
sex Freq. Percent Cum.
male 2 50.00 50.00
female 2 50.00 100.00
Total 4 100.00

It is only almost irrelevant because we can use the underlying numbers in statistical analyses. For
instance, if we were to ask Stata to calculate the mean of sex by typing summarize sex, Stata
would report 0.5. We would interpret that to mean that one-half of our sample is female.

Value labels are permanently associated with variables, so once we associate a value label with a
variable, we never have to do so again. If we wanted to add another observation to these data, we
could type

. input, label

name age sex
5. "Mark Esman" 26 male
6. end

Q Technical note

The automatic option automates the definition of the value label. In the previous example, we
informed Stata that male corresponds to O and female corresponds to 1 by typing label define
sex1lbl O "male" 1 "female". It was not necessary to explicitly specify the mapping. Specifying
the automatic option tells Stata to interpret what we type as follows:

First, see if the value is a number. If so, store that number and be done with it. If it is not
a number, check the value label associated with the variable in an attempt to interpret it. If an
interpretation exists, store the corresponding numeric code. If one does not exist, add a new numeric
code corresponding to what was typed. Store that new number and update the value label so that the
new correspondence is never forgotten.

input — Enter data from keyboard 387

We can use these features to reenter our age and sex data. Before reentering the data, we drop
_all and label drop _all to prove that we have nothing up our sleeve:

. drop _all
. label drop _all
. input str16 name byte(age sex:sexlbl), automatic

name age sex
"Arthur Doyle" 22 male
"Mary Hope" 37 "female"
"Guy Fawkes" 48 male
"Kriste Yeager" 25 female
end

D> WN -

We previously defined the value label sex1bl so that male corresponded to 0 and female corresponded
to 1. The label that Stata automatically created is slightly different but is just as good:

. label list sexlbl
sexlbl:

1 male

2 female

Reference
Kohler, U. 2005. Stata tip 16: Using input to generate variables. Stata Journal 5: 134.

Also see
[D] edit — Browse or edit data with Data Editor
[D] import — Overview of importing data into Stata
[D] save — Save Stata dataset

[U] 21 Entering and importing data

http://www.stata-journal.com/sjpdf.html?articlenum=dm0010

Title

inspect — Display simple summary of data’s attributes

Description Quick start Menu Syntax
Remarks and examples Stored results Also see

Description

The inspect command provides a quick summary of a numeric variable that differs from the
summary provided by summarize or tabulate. It reports the number of negative, zero, and positive
values; the number of integers and nonintegers; the number of unique values; and the number of
missing; and it produces a small histogram. Its purpose is not analytical but is to allow you to quickly
gain familiarity with unknown data.

Quick start

Summary of all numeric variables in the dataset
inspect

Summary of v1 for each level of catvar
bysort catvar: inspect vl

Summary of v1 if v2 is greater than 30
inspect v1 if v2 > 30

Menu

Data > Describe data > Inspect variables

Syntax
inspect [varlist] [zf] [m]

by is allowed; see [D] by.

388

inspect — Display simple summary of data’s attributes 389

Remarks and examples

Typing inspect by itself produces an inspection for all the variables in the dataset. If you specify
a varlist, an inspection of just those variables is presented.

> Example 1

inspect is not a replacement or substitute for summarize and tabulate. It is instead a data
management or information tool that lets us quickly gain insight into the values stored in a variable.

For instance, we receive data that purport to be on automobiles, and among the variables in
the dataset is one called mpg. Its variable label is Mileage (mpg), which is surely suggestive. We
inspect the variable,

. use http://www.stata-press.com/data/r14/auto
(1978 Automobile Data)
. inspect mpg

mpg: Mileage (mpg) Number of Observations
Total Integers Nonintegers
Negative - - -
Zero - - -
Positive 74 74 -
#
Total 74 74 -
. Missing -
[
12 41 74

(21 unique values)

and we discover that the variable is never missing; all 74 observations in the dataset have some
value for mpg. Moreover, the values are all positive and are all integers, as well. Among those 74
observations are 21 unique (different) values. The variable ranges from 12 to 41, and we are provided
with a small histogram that suggests that the variable appears to be what it claims.

4

> Example 2

Bob, a coworker, presents us with some census data. Among the variables in the dataset is one
called region, which is labeled Census region and is evidently a numeric variable. We inspect
this variable:

. use http://www.stata-press.com/data/r14/bobsdata
(1980 Census data by state)

. inspect region

region: Census region Number of Observations
Total Integers Nonintegers
Negative - - -
Zero - - -
Positive 50 50 -
#
Total 50 50 -
Missing -
|
1 5 50

(5 unique values)

region is labeled but 1 value is NOT documented in the label.

390 inspect — Display simple summary of data’s attributes

In this dataset something may be wrong. region takes on five unique values. The variable has a
value label, however, and one of the observed values is not documented in the label. Perhaps there
is a typographical error.

4
> Example 3
There was indeed an error. Bob fixes it and returns the data to us. Here is what inspect produces
now:
. use http://www.stata-press.com/data/r14/census
(1980 Census data by state)
. inspect region
region: Census region Number of Observations
Total Integers Nonintegers
Negative - - -
Zero - - -
Positive 50 50 -
#
Total 50 50 -
Missing -
[
1 4 50
(4 unique values)
region is labeled and all values are documented in the label.
d
> Example 4

We receive data on the climate in 956 U.S. cities. The variable tempjan records the Average
January temperature in degrees Fahrenheit. The results of inspect are
. use http://www.stata-press.com/data/ri4/citytemp
(City Temperature Data)

. inspect tempjan

tempjan: Average January temperature Number of Observations
Total Integers Nonintegers

Negative - - -
Zero - - -
Positive 954 78 876
#
Total 954 78 876
. Missing 2

I

2.2 72.6 956

(More than 99 unique values)

In two of the 956 observations, tempjan is missing. Of the 954 cities that have a recorded tempjan,
all are positive, and 78 of them are integer values. tempjan varies between 2.2 and 72.6. There are
more than 99 unique values of tempjan in the dataset. (Stata stops counting unique values after 99.)

N

inspect — Display simple summary of data’s attributes 391

Stored results

inspect stores the following in r():

Scalars
r(N) number of observations
r(N_neg) number of negative observations
r(N_0) number of observations equal to 0
r(N_pos) number of positive observations

r(N_negint) number of negative integer observations
r(N_posint) number of positive integer observations
r(N_unique) number of unique values or . if more than 99
r(N_undoc) number of undocumented values or . if not labeled

Also see

[D] codebook — Describe data contents

[D] compare — Compare two variables

[D] describe — Describe data in memory or in file

[D] ds — List variables matching name patterns or other characteristics

[D] isid — Check for unique identifiers

[R] Iv — Letter-value displays

[R] summarize — Summary statistics

[R] table — Flexible table of summary statistics

[R] tabulate oneway — One-way table of frequencies

[R] tabulate, summarize() — One- and two-way tables of summary statistics

[R] tabulate twoway — Two-way table of frequencies

Title

ipolate — Linearly interpolate (extrapolate) values

Description Quick start Menu Syntax
Options Remarks and examples Methods and formulas Reference
Also see

Description

ipolate creates in newvar a linear interpolation of yvar on xvar for missing values of yvar.

Because interpolation requires that yvar be a function of xvar, yvar is also interpolated for tied
values of xvar. When yvar is not missing and xvar is neither missing nor repeated, the value of
newvar is just yvar.

Quick start

Create y2 containing a linear interpolation of y1 on x for observations with missing values of y1 or
tied values of x

ipolate y1 x, generate(y2)

As above, but use interpolation and extrapolation
ipolate yl1 x, generate(y2) epolate

As above, but perform calculation separately for each level of catvar
by catvar: ipolate yl1 x, generate(y2) epolate

Menu

Data > Create or change data > Other variable-creation commands > Linearly interpolate/extrapolate values

392

ipolate — Linearly interpolate (extrapolate) values 393

Syntax

ipolate yvar xvar [zf] [m] , generate(newvar) [gpolate]

by is allowed; see [D] by.

Options

generate(newvar) is required and specifies the name of the new variable to be created.

epolate specifies that values be both interpolated and extrapolated. Interpolation only is the default.

Remarks and examples

> Example 1
We have data points on y and x, although sometimes the observations on y are missing. We believe
that y is a function of x, justifying filling in the missing values by linear interpolation:

. use http://www.stata-press.com/data/r14/ipolxmpli
. list, sep(0)

X y
1. 0 .
2. 1 3
3. 1.5
4. 2 6
5. 3
6. 3.5 .
7. 4 18

. ipolate y x, gen(yl)
(1 missing value generated)

. ipolate y x, gen(y2) epolate
. list, sep(0)

b4 y yi y2
1. 0 0
2. 1 3 3 3
3. 1.5 4.5 4.5
4. 2 6 6 6
5. 3 12 12
6. 3.5 . 15 15
7. 4 18 18 18

394 ipolate — Linearly interpolate (extrapolate) values

> Example 2

We have a dataset of circulations for 10 magazines from 1980 through 2003. The identity of the
magazines is recorded in magazine, circulation is recorded in circ, and the year is recorded in year.
In a few of the years, the circulation is not known, so we want to fill it in by linear interpolation.

. use http://www.stata-press.com/data/r14/ipolxmpl2, clear

. by magazine: ipolate circ year, gen(icirc)

When the by prefix is specified, interpolation is performed separately for each group.

Methods and formulas

The value y at x is found by finding the closest points (xg,yo) and (x1,y1), such that xg < x
and x; > x where yo and y; are observed, and calculating

Y1 — Yo
y= 2

T —x0) + Yo
Tr1 — o

If epolate is specified and if (x0,%0) and (21,y1) cannot be found on both sides of z, the two
closest points on the same side of x are found, and the same formula is applied.

If there are multiple observations with the same value for x(, then yq is taken as the average of
the corresponding y values for those observations. (z1,¥1) is handled in the same way.

Reference

Meijering, E. 2002. A chronology of interpolation: From ancient astronomy to modern signal and image processing.
Proceedings of the IEEE 90: 319-342.

Also see

[MI] mi impute — Impute missing values

Title

isid — Check for unique identifiers

Description Quick start Menu Syntax
Options Remarks and examples Also see

Description

isid checks whether the specified variables uniquely identify the observations.

Quick start
Verify that idvar uniquely identifies observations
isid idvar
Verify that idvar uniquely identifies observations within panels identified by pvar
isid idvar pvar

Same as above
isid pvar idvar

As above, and indicate that the data should be sorted by pvar and idvar
isid pvar idvar, sort

Verify that idvar uniquely identifies observations in mydata.dta
isid idvar using mydata.dta

Menu

Data > Data utilities > Check for unique identifiers

Syntax

isid varlist [using ﬁlename] [, sort missok}
Options

sort specifies that the dataset be sorted by varlist.

missok indicates that missing values are permitted in varlist.

395

396 isid — Check for unique identifiers

Remarks and examples

> Example 1

Suppose that we want to check whether the mileage ratings (mpg) uniquely identify the observations
in our auto dataset.

. use http://www.stata-press.com/data/r14/auto
(1978 Automobile Data)

. isid mpg
variable mpg does not uniquely identify the observations
r(459);

isid returns an error and reports that there are multiple observations with the same mileage rating.
We can locate those observations manually:

. sort mpg
. by mpg: generate nobs = _N

. list make mpg if nobs >1, sepby(mpg)

make mpg

[y

Linc. Mark V 12
2. Linc. Continental 12

(output omitted)
68. Mazda GLC 30
69. Dodge Colt 30
72. Subaru 35
73. Datsun 210 35

> Example 2

isid is useful for checking a time-series panel dataset. For this type of dataset, we usually need
two variables to identify the observations: one that labels the individual IDs and another that labels the
periods. Before we set the data using tsset, we want to make sure that there are no duplicates with
the same panel ID and time. Suppose that we have a dataset that records the yearly gross investment
of 10 companies for 20 years. The panel and time variables are company and year.
. use http://www.stata-press.com/data/r14/grunfeld, clear
. isid company year
isid reports no error, so the two variables company and year uniquely identify the observations.
Therefore, we should be able to tsset the data successfully:
. tsset company year
panel variable: company (strongly balanced)

time variable: year, 1935 to 1954
delta: 1 year

isid — Check for unique identifiers 397

O Technical note
The sort option is a convenient shortcut, especially when combined with using. The command
. isid patient_id date using newdata, sort
is equivalent to

. preserve

. use newdata, clear

. sort patient_id date
. isid patient_id date
. save, replace

. restore

Also see
[D] describe — Describe data in memory or in file
[D] ds — List variables matching name patterns or other characteristics
[D] duplicates — Report, tag, or drop duplicate observations
[D] lookfor — Search for string in variable names and labels
[D] codebook — Describe data contents

[D] inspect — Display simple summary of data’s attributes

Title

joinby — Form all pairwise combinations within groups

Description Quick start Menu
Syntax Options Remarks and examples
Acknowledgment Reference Also see

Description

joinby joins, within groups formed by varlist, observations of the dataset in memory with filename,
a Stata-format dataset. By join we mean to form all pairwise combinations. filename is required to
be sorted by varlist. If filename is specified without an extension, .dta is assumed.

If varlist is not specified, joinby takes as varlist the set of variables common to the dataset in
memory and in filename.

Observations unique to one or the other dataset are ignored unless unmatched () specifies differently.
Whether you load one dataset and join the other or vice versa makes no difference in the number of
resulting observations.

If there are common variables between the two datasets, however, the combined dataset will
contain the values from the master data for those observations. This behavior can be modified with
the update and replace options.

Quick start

Form pairwise combinations of observations from mydatal.dta in memory with those from my-
data2.dta using all common variables and drop unmatched observations

joinby using mydata2

As above, but join on v1, v2, and v3
joinby vl v2 v3 using mydata2

As above, but include unmatched observations only from mydata2.dta and add _merge indicating
whether the variable was in both datasets or only the using dataset

joinby vl v2 v3 using mydata2, unmatched(using)

As above, but include unmatched observations only from mydatal.dta
joinby v1 v2 v3 using mydata2, unmatched(master)

As above, but name the variable indicating the source of the observation newv
joinby v1 v2 v3 using mydata2, unmatched(master) _merge(newv)

Replace missing data in mydatal.dta with values from mydata2.dta
joinby vl v2 v3 using mydata2, update

Replace missing and conflicting data in mydatal.dta with values from mydata2.dta
joinby vl v2 v3 using mydata2, update replace

398

joinby — Form all pairwise combinations within groups 399

Menu

Data > Combine datasets > Form all pairwise combinations within groups

Syntax
joinby [varlist] using filename [, options]
options Description
Options
When observations match:
update replace missing data in memory with values from filename
replace replace all data in memory with values from filename

‘When observations do not match:

unmatched (none) ignore all; the default

unmatched (both) include from both datasets

unmatched (master) include from data in memory

unmatched (using) include from data in filename

_merge (varname) varname marks source of resulting observation; default is _merge
nolabel do not copy value-label definitions from filename

varlist may not contain strLs.

Options
_ [Options |

update varies the action that joinby takes when an observation is matched. By default, values from
the master data are retained when the same variables are found in both datasets. If update is
specified, however, the values from the using dataset are retained where the master dataset contains
missing.

replace, allowed with update only, specifies that nonmissing values in the master dataset be replaced
with corresponding values from the using dataset. A nonmissing value, however, will never be
replaced with a missing value.

unmatched (none | both | master |using) specifies whether observations unique to one of the datasets
are to be kept, with the variables from the other dataset set to missing. Valid values are

none ignore all unmatched observations (default)

both include unmatched observations from the master and using data
master include unmatched observations from the master data

using include unmatched observations from the using data

_merge (varname) specifies the name of the variable that will mark the source of the resulting
observation. The default name is _merge (_merge). To preserve compatibility with earlier versions
of joinby, _merge is generated only if unmatched is specified.

nolabel prevents Stata from copying the value-label definitions from the dataset on disk into the
dataset in memory. Even if you do not specify this option, label definitions from the disk dataset
do not replace label definitions already in memory.

400 joinby — Form all pairwise combinations within groups

Remarks and examples

The following, admittedly artificial, example illustrates joinby.

> Example 1

We have two datasets: child.dta and parent.dta. Both contain a family_id variable, which
identifies the people who belong to the same family.
. use http://www.stata-press.com/data/r14/child
(Data on Children)
. describe

Contains data from http://www.stata-press.com/data/r14/child.dta

obs: 5 Data on Children
vars: 4 11 Dec 2014 21:08
size: 30

storage display value

variable name type format label variable label
family_id int %8.0g Family ID number
child_id byte %8.0g Child ID number
x1 byte %8.0g
x2 int %8.0g

Sorted by: family_id

. list
family~d child_id x1 x2
1. 1025 3 11 320
2. 1025 1 12 300
3. 1025 4 10 275
4. 1026 2 13 280
5. 1027 5 15 210

. use http://www.stata-press.com/data/r14/parent
(Data on Parents)

. describe

Contains data from http://www.stata-press.com/data/r14/parent.dta

obs: 6 Data on Parents
vars: 4 11 Dec 2014 03:06

size: 84

storage display value

variable name type format label variable label
family_id int %8.0g Family ID number
parent_id float %9.0g Parent ID number
x1 float %9.0g
x3 float %9.0g

Sorted by:

joinby — Form all pairwise combinations within groups 401

. list, sep(0)

family~d parent~d x1 x3
1. 1030 10 39 600
2. 1025 11 20 643
3. 1025 12 27 721
4. 1026 13 30 760
5. 1026 14 26 668
6. 1030 15 32 684

We want to join the information for the parents and their children. The data on parents are in memory,
and the data on children are posted at http://www.stata-press.com. child.dta has been sorted by
family_id, but parent.dta has not, so first we sort the parent data on family_id:

. sort family_id
. joinby family_id using http://www.stata-press.com/data/r14/child
. describe

Contains data

obs: 8 Data on Parents
vars: 6

size: 136

storage display value

variable name type format label variable label
family_id int %8.0g Family ID number
parent_id float %9.0g Parent ID number
x1 float %9.0g
x3 float %9.0g

child_id byte %8.0g Child ID number
x2 int %8.0g

Sorted by: family_id
Note: Dataset has changed since last saved.

. list, sepby(family_id) abbrev(12)

family_id parent_id x1 x3 child_id x2
1. 1025 12 27 721 1 300
2. 1025 12 27 721 4 275
3. 1025 12 27 721 3 320
4. 1025 11 20 643 3 320
5. 1025 11 20 643 1 300
6. 1025 11 20 643 4 275
7. 1026 13 30 760 2 280
8. 1026 14 26 668 2 280

1. family_id of 1027, which appears only in child.dta, and family_id of 1030, which appears
only in parent.dta, are not in the combined dataset. Observations for which the matching
variables are not in both datasets are omitted.

2. The x1 variable is in both datasets. Values for this variable in the joined dataset are the values
from parent.dta—the dataset in memory when we issued the joinby command. If we had
child.dta in memory and parent.dta on disk when we requested joinby, the values for x1

http://www.stata-press.com

402 joinby — Form all pairwise combinations within groups

would have been those from child.dta. Values from the dataset in memory take precedence over
the dataset on disk.
d

Acknowledgment

joinby was written by Jeroen Weesie of the Department of Sociology at Utrecht University, The
Netherlands.

Reference

Baum, C. F. 2009. An Introduction to Stata Programming. College Station, TX: Stata Press.

Also see
[D] append — Append datasets

[D] cross — Form every pairwise combination of two datasets
[D] fillin — Rectangularize dataset

[D] merge — Merge datasets

[D] save — Save Stata dataset

[U] 22 Combining datasets

http://www.stata-press.com/books/isp.html

Title

label — Manipulate labels

Description Quick start Menu Syntax
Options Remarks and examples Stored results References
Also see

Description

label data attaches a label (up to 80 characters) to the dataset in memory. Dataset labels are
displayed when you use the dataset and when you describe it. If no label is specified, any existing
label is removed.

label variable attaches a label (up to 80 characters) to a variable. If no label is specified, any
existing variable label is removed.

label define defines a list of up to 65,536 (1,000 for Small Stata) associations of integers and
text called value labels. Value labels are attached to variables by label values.

label values attaches a value label to varlist. If . is specified instead of [blname, any existing
value label is detached from that varlist. The value label, however, is not deleted. The syntax label
values varname (that is, nothing following the varname) acts the same as specifying the .. Value
labels may be up to 32,000 characters long.

label dir lists the names of value labels stored in memory.

label list lists the names and contents of value labels stored in memory.
label copy makes a copy of an existing value label.

label drop eliminates value labels.

label save saves value labels in a do-file. This is particularly useful for value labels that are not
attached to a variable because these labels are not saved with the data.

See [D] label language for information on the label language command.

Quick start

Label the dataset “My data”
label data "My data"

Label v1 “First variable”

label variable vl "First variable"

Define value label named mylabell
label define mylabell 1 "value 1" 2 "value 2"

Add value labels for 0 and 3 to mylabell
label define mylabell O "value 0" 3 "value 3", add

Copy mylabell to mylabel2
label copy mylabell mylabel2

403

404 label — Manipulate labels

Redefine value 0 in mylabel2 to mean “Null”
label define mylabel2 O "Null", modify

Apply value label mylabell to v1
label values vl mylabell

Save all currently defined value labels to mylabels.do for use with other datasets
label save using mylabels.do

List names and contents of all value labels
label list

Drop all value labels
label drop _all

Menu
label data
Data > Data utilities > Label utilities > Label dataset

label variable

Data > Variables Manager

label define

Data > Variables Manager

label values

Data > Variables Manager

label list

Data > Data utilities > Label utilities > List value labels

label copy

Data > Data utilities > Label utilities > Copy value labels

label drop

Data > Variables Manager

label save

Data > Data utilities > Label utilities > Save value labels as do-file

label — Manipulate labels 405

Syntax

Label dataset

label data ["label"]

Label variable

label variable varname ["label“]

Define value label

label define lblname # "label" [# "label" ... } [, add modify replace nofix]

Assign value label to variables

label values varlist [lblname| .] [, nofix}

List names of value labels

label dir

List names and contents of value labels

label list [lblname [lblname ...]]

Copy value labels

label copy [blname Iblname [, replace}

Drop value labels

label drop { lblname |[lblname ...||_all}

Save value labels in do-file

label save [lblname [lblname]] using filename [, replace]

Labels for variables and values in multiple languages

label language ... (see [D] label language)

where # is an integer or an extended missing value (.a, .b, ..., .2).

Options

add allows you to add # <+ label correspondences to [blname. If add is not specified, you may create
only new [blnames. If add is specified, you may create new lblnames or add new entries to existing
Iblnames.

406 label — Manipulate labels

modify allows you to modify or delete existing # <+ label correspondences and add new correspon-
dences. Specifying modify implies add, even if you do not type the add option.

replace, with label define, allows an existing value label to be redefined. replace, with label
copy, allows an existing value label to be copied over. replace, with label save, allows filename
to be replaced.

nofix prevents display formats from being widened according to the maximum length of the value
label. Consider 1abel values myvar mylab, and say that myvar has a %9.0g display format
right now. Say that the maximum length of the strings in mylab is 12 characters. label values
would change the format of myvar from %9.0g to %12.0g. nofix prevents this.

nofix is also allowed with label define, but it is relevant only when you are modifying an
existing value label. Without the nofix option, label define finds all the variables that use this
value label and considers widening their display formats. nofix prevents this.

Remarks and examples

See [U] 12.6 Dataset, variable, and value labels for a complete description of labels. This entry
deals only with details not covered there.

label dir lists the names of all defined value labels. 1abel list displays the contents of a
value label.

> Example 1

Although describe shows the names of the value labels, those value labels may not exist. Stata
does not consider it an error to label the values of a variable with a nonexistent label. When this
occurs, Stata still shows the association on describe but otherwise acts as if the variable’s values
are unlabeled. This way, you can associate a value label name with a variable before creating the
corresponding label. Similarly, you can define labels that you have not yet used.

. use http://www.stata-press.com/data/r14/hbp4
. describe

Contains data from http://www.stata-press.com/data/r14/hbp4.dta

obs: 1,130
vars: 7 22 Jan 2014 11:12
size: 19,210
storage display value
variable name type format label variable label
id stri0 %10s Record identification number
city byte %8.0g
year int %8.0g
age_grp byte %8.0g
race byte %8.0g
hbp byte %8.0g
female byte %8.0g sexlbl
Sorted by:

The dataset is using the value label sex1bl. Let’s define the value label yesno:

. label define yesno 0 "no" 1 "yes"

label — Manipulate labels 407

label dir shows you the labels that you have actually defined:

. label dir
yesno
sexlbl

We have two value labels stored in memory: yesno and sexlbl.
We can display the contents of a value label with the 1abel 1ist command:

. label list yesno
yesno:

0 no

1 yes

The value label yesno labels the values 0 as no and 1 as yes.

If you do not specify the name of the value label on the 1abel 1list command, Stata lists all the
value labels:

. label list
yesno:

0 no

1 yes
sexlbl:

0 male

1 female

Q Technical note

Because Stata can have more value labels stored in memory than are actually used in the dataset,
you may wonder what happens when you save the dataset. Stata stores only those value labels
actually associated with variables.

When you use a dataset, Stata eliminates all the value labels stored in memory before loading
the dataset.
a

You can add new codings to an existing value label by using the add option with the label
define command. You can modify existing codings by using the modify option. You can redefine
a value label by specifying the replace option.

> Example 2

The label yesno codes 0 as no and 1 as yes. You might wish later to add a third coding: 2 as
maybe. Typing label define with no options results in an error:
. label define yesno 2 maybe

label yesno already defined
r(110);

If you do not specify the add, modify, or replace options, label define can be used only to
create new value labels. The add option lets you add codings to an existing label:

408 label — Manipulate labels

. label define yesno 2 maybe, add

. label list yesno
yesno:

0 no

1 yes

2 maybe

Perhaps you have accidentally mislabeled a value. For instance, 2 may not mean “maybe” but may
instead mean “don’t know”. add does not allow you to change an existing label:

. label define yesno 2 "don’t know", add
invalid attempt to modify label
r(180);

Instead, you would specify the modify option:

. label define yesno 2 "don’t know", modify

. label list yesno
yesno:

0 no

1 yes

2 don’t know

In this way, Stata attempts to protect you from yourself. If you type label define with no
options, you can only create a new value label—you cannot accidentally change an existing one. If
you specify the add option, you can add new labels to a label, but you cannot accidentally change
any existing label. If you specify the modify option, which you may not abbreviate, you can change
any existing label.

You can even use the modify option to eliminate existing labels. To do this, you map the numeric
code to a null string, that is, "":

. label define yesno 2 "", modify

. label list yesno
yesno:
0 no

1 yes N
You can eliminate entire value labels by using the label drop command.

> Example 3

We currently have two value labels stored in memory—sex1bl and yesno—as shown by the
label dir command:

. label dir
yesno
sexlbl

The dataset that we have in memory uses only one of the labels—sex1bl. describe reports that
yesno is not being used:

label — Manipulate labels 409

. describe

Contains data from http://www.stata-press.com/data/r14/hbp4.dta

obs: 1,130
vars: 7 22 Jan 2014 11:12
size: 19,210
storage display value
variable name type format label variable label
id stri0 %10s Record identification number
city byte %8.0g
year int %8.0g
age_grp byte %8.0g
race byte %8.0g
hbp byte %8.0g
female byte %8.0g sexlbl
Sorted by:

We can eliminate the yesno label by typing

. label drop yesno

. label dir
sexlbl

We could eliminate all the value labels in memory by typing
. label drop _all
. label dir
The value label sex1bl, which no longer exists, was associated with the variable female. Even
after dropping the value label, sex1bl is still associated with the variable:

. describe

Contains data from http://www.stata-press.com/data/r14/hbp4.dta

obs: 1,130
vars: 7 22 Jan 2014 11:12
size: 19,210
storage display value
variable name type format label variable label
id stri0 %10s Record identification number
city byte %8.0g
year int %8.0g
age_grp byte %8.0g
race byte %8.0g
hbp byte %8.0g
female byte %8.0g sexlbl

Sorted by:

410 label — Manipulate labels

Stata does not mind if a nonexistent value label is associated with a variable. When Stata uses such
a variable, it simply acts as if the variable is not labeled:

. list in 1/4
id city year age_grp race hbp female
1. 8008238923 1 1993 2 2 0 1
2. 8007143470 1 1992 5 . 0 .
3. 8000468015 1 1988 4 2 0 0
4. 8006167153 1 1991 4 2 0 0

4

The label save command creates a do-file containing label define commands for each label
you specify. If you do not specify the Iblnames, all value labels are stored in the file. If you do not
specify the extension for filename, .do is assumed.

> Example 4

label copy is useful when you want to create a new value label that is similar to an existing
value label. For example, assume that we currently have the value label yesno in memory:
. label list yesno
yesno:
1 yes
2 no

Assume that we have some variables in our dataset coded with 1 and 2 for “yes” and “no” and
that we have some other variables coded with 1 for “yes”, 2 for “no”, and 3 for “maybe”.
We could make a copy of label yesno and then add the new coding to that copy:

. label copy yesno yesnomaybe

. label define yesnomaybe 3 "maybe", add

. label list
yesnomaybe:
1 yes
2 no
3 maybe
yesno:
1 yes
2 no
4
> Example 5

Labels are automatically stored with your dataset when you save it. Conversely, the use command
drops all labels before loading the new dataset. You may occasionally wish to move a value label
from one dataset to another. The label save command allows you to do this.

For example, assume that we currently have the value label yesnomaybe in memory:

. label list yesnomaybe
yesnomaybe:

1 yes

2 no

3 maybe

label — Manipulate labels 411

We have a dataset stored on disk called survey.dta to which we wish to add this value label.
We might use survey and then retype the label define yesnomaybe command. Retyping the
label would not be too tedious here but if the value label in memory mapped, say, the 50 states of
the United States, retyping it would be irksome. label save provides an alternative:

. label save yesnomaybe using ynfile
file ynfile.do saved

Typing label save yesnomaybe using ynfile caused Stata to create a do-file called ynfile.do
containing the definition of the yesnomaybe label.

To see the contents of the file, we can use the type command:

. type ynfile.do

label define yesnomaybe 1 ‘"yes"’, modify
label define yesnomaybe 2 ‘"no"’, modify
label define yesnomaybe 3 ‘"maybe"’, modify

We can now use our new dataset, survey.dta:
. use survey
(Household survey data)
. label dir

Using the new dataset causes Stata to eliminate all value labels stored in memory. The label yesnomaybe
is now gone. Because we saved it in the file ynfile.do, however, we can get it back by typing
either do ynfile or run ynfile. If we type do, we will see the commands in the file execute. If
we type run, the file will execute silently:

. run ynfile

. label dir
yesnomaybe

The label is now restored just as if we had typed it from the keyboard.

Q Technical note

You can also use the label save command to more easily edit value labels. You can save a label
in a file, leave Stata and use your word processor or editor to edit the label, and then return to Stata.
Using do or run, you can load the edited values.

a

Stored results

label list stores the following in r():

Scalars
r(k) number of mapped values, including missings
r(min) minimum nonmissing value label
r (max) maximum nonmissing value label

r(hasemiss) 1 if extended missing values labeled, O otherwise

412 label — Manipulate labels

label dir stores the following in r():

Macros
r (names) names of value labels

References

Gleason, J. R. 1998a. dm56: A labels editor for Windows and Macintosh. Stata Technical Bulletin 43: 3—-6. Reprinted
in Stata Technical Bulletin Reprints, vol. 8, pp. 5-10. College Station, TX: Stata Press.

——. 1998b. dm56.1: Update to labedit. Stata Technical Bulletin 51: 2. Reprinted in Stata Technical Bulletin Reprints,
vol. 9, p. 15. College Station, TX: Stata Press.

Long, J. S. 2009. The Workflow of Data Analysis Using Stata. College Station, TX: Stata Press.

Weesie, J. 1997. dm47: Veritying value label mappings. Stata Technical Bulletin 37: 7-8. Reprinted in Stata Technical
Bulletin Reprints, vol. 7, pp. 39-40. College Station, TX: Stata Press.

——. 2005a. Value label utilities: labeldup and labelrename. Stata Journal 5: 154-161.
——. 2005b. Multilingual datasets. Stata Journal 5: 162-187.

Also see
[D] label language — Labels for variables and values in multiple languages
[D] labelbook — Label utilities
[D] encode — Encode string into numeric and vice versa
[D] varmanage — Manage variable labels, formats, and other properties

[U] 12.6 Dataset, variable, and value labels

http://www.stata.com/products/stb/journals/stb43.pdf
http://www.stata.com/products/stb/journals/stb51.pdf
http://www.stata-press.com/books/wdaus.html
http://www.stata.com/products/stb/journals/stb37.pdf
http://www.stata-journal.com/sjpdf.html?articlenum=dm0012
http://www.stata-journal.com/sjpdf.html?articlenum=dm0013

Title

label language — Labels for variables and values in multiple languages

Description Quick start Menu Syntax
Option Remarks and examples Stored results Methods and formulas
References Also see

Description

label language lets you create and use datasets that contain different sets of data, variable, and
value labels. A dataset might contain one set in English, another in German, and a third in Spanish.
A dataset may contain up to 100 sets of labels.

We will write about the different sets as if they reflect different spoken languages, but you need
not use the multiple sets in this way. You could create a dataset with one set of long labels and
another set of shorter ones.

One set of labels is in use at any instant, but a dataset may contain multiple sets. You can choose
among the sets by typing

. label language languagename

When other Stata commands produce output (such as describe and tabulate), they use the
currently set language. When you define or modify the labels by using the other label commands
(see [D] label), you modify the current set.

label language (without arguments)
lists the available languages and the name of the current one. The current language refers to
the labels you will see if you used, say, describe or tabulate. The available languages refer
to the names of the other sets of previously created labels. For instance, you might currently
be using the labels in en (English), but labels in de (German) and es (Spanish) may also be
available.

label language languagename
changes the labels to those of the specified language. For instance, if 1abel language revealed
that en, de, and es were available, typing label language de would change the current
language to German.

label language languagename, new
allows you to create a new set of labels and collectively name them languagename. You may
name the set as you please, as long as the name does not exceed 24 characters. If the labels
correspond to spoken languages, we recommend that you use the language’s I1SO 639-1 two-letter
code, such as en for English, de for German, and es for Spanish. A list of codes for popular
languages is listed in the appendix below. For a complete list, see
http://lcweb.loc.gov/standards/is0639-2/iso639jac.html.

label language languagename, rename
changes the name of the label set currently in use. If the label set in use were named default
and you now wanted to change that to en, you could type label language en, rename.

Our choice of the name default in the example was not accidental. If you have not yet
used label language to create a new language, the dataset will have one language, named
default.

413

http://lcweb.loc.gov/standards/iso639-2/iso639jac.html

414 label language — Labels for variables and values in multiple languages

label language languagename, delete
deletes the specified label set. If languagename is also the current language, one of the other
available languages becomes the current language.

Quick start

Name unnamed default language en for English
label language en, rename

Create new set of labels in French named fr
label language fr, new

Change current label language from English to French
label language fr

List defined languages
label language

Delete English label set
label language en, delete

Menu

Data > Data utilities > Label utilities > Set label language

Syntax
List defined languages

label language

Change labels to specified language name

label language languagename

Create new set of labels with specified language name

label language languagename, new [copy]

Rename current label set

label language languagename, rename

Delete specified label set

label language languagename, delete

label language — Labels for variables and values in multiple languages 415

Option

copy is used with label language, new and copies the labels from the current language to the
new language.

Remarks and examples

Remarks are presented under the following headings:

Creating labels in the first language

Creating labels in the second and subsequent languages
Creating labels from a clean slate

Creating labels from a previously existing language
Switching languages

Changing the name of a language

Deleting a language

Appendix: Selected ISO 639-1 two-letter codes

Creating labels in the first language
You can begin by ignoring the label language command. You create the data, variable, and
value labels just as you would ordinarily; see [D] label.

. label data "1978 Automobile Data"
. label variable foreign "Car type"
. label values foreign origin

. label define origin O "Domestic" 1 "Foreign"

At some point—at the beginning, the middle, or the end—rename the language appropriately. For
instance, if the labels you defined were in English, type

. label language en, rename

label language, rename simply changes the name of the currently set language. You may
change the name as often as you wish.

Creating labels in the second and subsequent languages

After creating the first language, you can create a new language by typing

. label language newlanguagename, new

or by typing the two commands

. label language existinglanguagename
. label language newlanguagename, new copy

In the first case, you start with a clean slate: no data, variable, or value labels are defined. In the
second case, you start with the labels from existinglanguagename, and you can make the changes
from there.

416 label language — Labels for variables and values in multiple languages

Creating labels from a clean slate

To create new labels in the language named de, type

. label language de, new

If you were now to type describe, you would find that there are no data, variable, or value
labels. You can define new labels in the usual way:

. label data "1978 Automobil Daten"
. label variable foreign "Art Auto"

. label values foreign origin_de
. label define origin_de O "Innen" 1 "Auslandisch"

Creating labels from a previously existing language

It is sometimes easier to start with the labels from a previously existing language, which you can
then translate:

. label language en
. label language de, new copy

If you were now to type describe, you would see the English-language labels, even though the
new language is named de. You can then work to translate the labels:
. label data "1978 Automobil Daten"

. label variable foreign "Art Auto"

Typing describe, you might also discover that the variable foreign has the value label origin.
Do not change the contents of the value label. Instead, create a new value label:

. label define origin_de O "Innen" 1 "Ausl&ndisch"
. label values foreign origin_de

Creating value labels with the copy option is no different from creating them from a clean slate,
except that you start with an existing set of labels from another language. Using describe can make
it easier to translate them.

Switching languages

You can discover the names of the previously defined languages by typing

. label language

You can switch to a previously defined language—say, to en—by typing

. label language en

Changing the name of a language

To change the name of a previously defined language make it the current language and then specify
the rename option:

. label language de
. label language German, rename

You may rename a language as often as you wish:

. label language de, rename

label language — Labels for variables and values in multiple languages 417

Deleting a language

To delete a previously defined language, such as de, type

. label language de, delete

The delete option deletes the specified language and, if the language was also the currently set
language, resets the current language to one of the other languages or to default if there are none.

Appendix: Selected ISO 639-1 two-letter codes

You may name languages as you please. You may name German labels Deutsch, German, Aleman,
or whatever else appeals to you. For consistency across datasets, if the language you are creating is
a spoken language, we suggest that you use the 1SO 639-1 two-letter codes. Some of them are listed
below, and the full list can be found at http://lcweb.loc.gov/standards/is0639-2/is0639jac.html.

http://lcweb.loc.gov/standards/iso639-2/iso639jac.html

418 label language — Labels for variables and values in multiple languages

Two-letter English name of

code language

ar Arabic

cs Czech

cy Welsh

de German

el Greek

en English

es Spanish; Castillian
fa Persian

fi Finnish

fr French

ga Irish

he Hebrew

hi Hindi

is Icelandic

it Italian

ja Japanese

kl Kalaallisut; Greenlandic

It Lithuanian

Iv Latvian

nl Dutch; Flemish
no Norwegian

pl Polish

pt Portuguese

o Romanian; Moldavian
ru Russian

sk Slovak

Sr Serbian

Y Swedish

tr Turkish

uk Ukrainian

uz Uzbek

zh Chinese

Stored results

label language without arguments stores the following in r():

Scalars
r(k) number of languages defined

Macros
r(languages) list of languages, listed one after the other
r(language) name of current language

label language — Labels for variables and values in multiple languages 419

Methods and formulas

This section is included for programmers who wish to access or extend the services label
language provides.

Language sets are implemented using [P] char. The names of the languages and the name of the
current language are stored in

_dta[_lang_list] list of defined languages
_dta[_lang_c} currently set language
If these characteristics are undefined, results are as if each contained the word “default”. Do
not change the contents of the above two macros except by using label language.

For each language languagename except the current language, data, variable, and value labels are

stored in
_dta[_lang_v_languagename] data label
varname [_lang_v_languagename] variable label
varname [_lang_l_languagename] value-label name
References

Golbe, D. L. 2010. Stata tip 83: Merging multilingual datasets. Stata Journal 10: 152-156.
Weesie, J. 2005. Multilingual datasets. Stata Journal 5: 162-187.

Also see
[D] label — Manipulate labels
[D] labelbook — Label utilities

[D] codebook — Describe data contents

http://www.stata-journal.com/sjpdf.html?articlenum=dm0046
http://www.stata-journal.com/sjpdf.html?articlenum=dm0013

Title

labelbook — Label utilities

Description Quick start Menu Syntax
Options Remarks and examples Stored results Acknowledgments
References Also see

Description

labelbook displays information for the value labels specified or, if no labels are specified, all the
labels in the data.

For multilingual datasets (see [D] label language), 1abelbook lists the variables to which value
labels are attached in all defined languages.

numlabel prefixes numeric values to value labels. For example, a value mapping of 2 ->
"catholic" will be changed to 2 -=> "2. catholic". See option mask() for the different formats.
Stata commands that display the value labels also show the associated numeric values. Prefixes are
removed with the remove option.

uselabel is a programmer’s command that reads the value-label information from the currently
loaded dataset or from an optionally specified filename.

uselabel creates a dataset in memory that contains only that value-label information. The new
dataset has four variables named label, 1lname, value, and trunc; is sorted by 1lname value; and
has 1 observation per mapping. Value labels can be longer than the maximum string length in Stata;
see [R] limits. The new variable trunc contains 1 if the value label is truncated to fit in a string
variable in the dataset created by uselabel.

uselabel complements label, save, which produces a text file of the value labels in a format
that allows easy editing of the value-label texts.

Specifying no list or _all is equivalent to specifying all value labels. Value-label names may not
be abbreviated or specified with wildcards.

Quick start

Codebook of all currently defined value labels
labelbook

As above, but only include labels mylabell, mylabel2, and mylabel3
labelbook mylabell mylabel2 mylabel3

As above, and check that value labels are unique to the first 8 characters
labelbook mylabell mylabel2 mylabel3, length(8)

Prefix numeric values to mylabell with the number separated from the text by a hyphen
numlabel mylabell, add mask("# - ")

Remove a prefixed numeric value from a value label when the “# -” mask was used
numlabel mylabell, remove mask("# - ")

420

labelbook — Label utilities

421

Menu
labelbook

Data > Data utilities > Label utilities > Produce codebook of value labels

numlabel

Data > Data utilities > Label utilities > Prepend values to value labels

uselabel

Data > Data utilities > Label utilities > Create dataset from value labels

Syntax

Produce a codebook describing value labels

labelbook [lblname-list] [, labelbook_options]

Prefix numeric values to value labels

numlabel [lblname-list] s {gdd | remove } [numlabel_options]

Make dataset containing value-label information

uselabel [lblname-list] [using ﬁlename] [, clear yar]

labelbook _options Description

alpha alphabetize label mappings

length(#) check if value labels are unique to length #; default is length(12)
list (#) list maximum of # mappings; default is 1ist (32000)

problems describe potential problems in a summary report

detail do not suppress detailed report on variables or value labels

numlabel_options

Description

*add prefix numeric values to value labels
*remove remove numeric values from value labels
mask (str) mask for formatting numeric labels; default mask is "#. "
force force adding or removing of numeric labels
detail provide details about value labels, where some labels are prefixed with

numbers and others are not

* Either add or remove must be specified.

Options

Options are presented under the following headings:

Options for labelbook
Options for numlabel
Options for uselabel

422 labelbook — Label utilities

Options for labelbook

alpha specifies that the list of value-label mappings be sorted alphabetically on label. The default is
to sort the list on value.

length(#) specifies the minimum length that labelbook checks to determine whether shortened
value labels are still unique. It defaults to 12, the width used by most Stata commands. labelbook
also reports whether value labels are unique at their full length.

list (#) specifies the maximum number of value-label mappings to be listed. If a value label defines
more mappings, a random subset of # mappings is displayed. By default, 1labelbook displays all
mappings. 1ist (0) suppresses the listing of the value-label definitions.

problems specifies that a summary report be produced describing potential problems that were
diagnosed:

1. Value label has gaps in mapped values (for example, values O and 2 are labeled, while 1 is not)

2. Value label strings contain leading or trailing blanks

e

Value label contains duplicate labels, that is, there are different values that map into the same
string

Value label contains duplicate labels at length 12
Value label contains numeric — numeric mappings

Value label contains numeric — null string mappings

N v s

Value label is not used by variables

detail may be specified only with problems. It specifies that the detailed report on the variables
or value labels not be suppressed.

Options for numlabel

add specifies that numeric values be prefixed to value labels. Value labels that are already numlabeled
(using the same mask) are not modified.

remove specifies that numeric values be removed from the value labels. If you added numeric values
by using a nondefault mask, you must specify the same mask to remove them. Value labels that
are not numlabeled or are numlabeled using a different mask are not modified.

mask (str) specifies a mask for formatting the numeric labels. In the mask, # is replaced by the
numeric label. The default mask is "#. " so that numeric value 3 is shown as "3. ". Spaces are
relevant. For the mask " [#]", numeric value 3 would be shown as "[3]".

force specifies that adding or removing numeric labels be performed, even if some value labels are
numlabeled using the mask and others are not. Here only labels that are not numlabeled will
be modified.

detail specifies that details be provided about the value labels that are sometimes, but not always,
numlabeled using the mask.

Options for uselabel

clear permits the dataset to be created, even if the dataset already in memory has changed since it
was last saved.

var specifies that the varlists using value label v/ be returned in r (vi).

labelbook — Label utilities 423

Remarks and examples

Remarks are presented under the following headings:

labelbook
Diagnosing problems
numlabel

uselabel

labelbook

labelbook produces a detailed report of the value labels in your data. You can restrict the report
to a list of labels, meaning that no abbreviations or wildcards will be allowed. labelbook is a
companion command to [D] codebook, which describes the data, focusing on the variables.

For multilingual datasets (see [D] label language), 1abelbook lists the variables to which value
labels are attached in any of the languages.

> Example 1

We request a labelbook report for value labels in a large dataset on the internal organization of
households. We restrict output to three value labels: agreeb (used for five-point Likert-style items),
divlabor (division of labor between husband and wife), and noyes for simple no-or-yes questions.

. use http://www.stata-press.com/data/r14/labelbookl

. labelbook agreeb divlabor noyes

value label agreeb

values labels
range: [1,5] string length: [8,11]
N: 5 unique at full length: yes
gaps: no unique at length 12: yes
missing .*: O null string: no

leading/trailing blanks: no
numeric -> numeric: no

definition
1 -- disagree
2 - disagree
3 indifferent
4 + agree
5 ++ agree

variables: 1rs056 rs057 rs058 rs059 rs060 rs061 rs062 rs063 rs064 rs065 rs066
rs067 rs068 rs069 rs070 rs071 rs072 rs073 rs074 rs075 rs076 rs077
rs078 rs079 rs080 rs081

424 labelbook — Label utilities

value label divlabor

values labels
range: [1,7] string length: [7,16]
N: 7 unique at full length: yes
gaps: no unique at length 12: yes
missing .*: O null string: no

leading/trailing blanks: yes
numeric -> numeric: no
definition
wife only
wife >> husband
wife > husband
equally
husband > wife
husband >> wife
husband only

variables: hmO1_a hmO1_b hmO1_c hmO1_d hmO1l_e hnl9 hn21 hn25_a hn25_b hn25_c
hn25_d hn25_e hn27_a hn27_b hn27_c hn27_d hn27_e hn31 hn36 hn38
hn42 hn46_a hn46_b hn46_c hn46_d hn46_e hoOl_a hoO1l_b hoOl_c
hoO1_d hoO1l_e

N O O WN

value label noyes

values labels
range: [1,2] string length: [2,16]
N: 4 unique at full length: yes
gaps: no unique at length 12: yes
missing .*: 2 null string: no

leading/trailing blanks: no
numeric -> numeric: no

definition
1 no
2 yes

.a not applicable
.b ambiguous answer

variables: hbl2 hdO1_a hdO1_b hd03 hd04_a hd04_b heO3_a heO3_b hlat hn09_b
hn24_a hn34 hn49 huO5_a hu06_1c hu06_2c hx07_a hx08 hlat2 hfinish
rh02 rj10_01 rki16_a rk16_b rl01 rl03 rl08_a rl08_b rl09_a rs047
rs048 rs049 rs050 rs051 rs052 rs053 rs054 rs093 rs095 rs096 rs098

The report is largely self-explanatory. Extended missing values are denoted by “. *”. In the definition
of the mappings, the leading 12 characters of longer value labels are underlined to make it easier to
check that the value labels still make sense after truncation. The following example emphasizes this
feature. The option alpha specifies that the value-label mappings be sorted in alphabetical order by
the label strings rather than by the mapped values.

labelbook — Label utilities

425

. use http://www.stata-press.com/data/r14/labelbook2

. labelbook sports, alpha

value label sports

values labels
range: [1,5] string length: [16,23]
N: 4 unique at full length: yes
gaps: yes unique at length 12: no
missing .*: O null string: no

leading/trailing blanks: no
numeric -> numeric: no
definition
5 college baseball

4 college basketball
2 professional baseball

1 professional basketball

variables: active passive

The report includes information about potential problems in the data. These are discussed in greater

detail in the next section.

d

Diagnosing problems

labelbook can diagnose a series of potential problems in the value-label mappings. labelbook

produces warning messages for a series of problems:

1.

Gaps in the labeled values (for example, values 0 and 2 are labeled, whereas 1 is not) may occur
when value labels of the intermediate values have not been defined.

. Leading or trailing blanks in the value labels may distort Stata output.

3. Stata allows you to define blank labels, that is, the mapping of a number to the empty string.

Below we give you an example of the unexpected output that may result. Blank labels are most
often the result of a mistaken value-label definition, for instance, the expansion of a nonexisting
macro in the definition of a value label.

. Stata does not require that the labels within each value label consist of unique strings, that is, that

different values be mapped into different strings. For instance, you might accidentally define the
value label gender as

label define gender 1 female 2 female

You will probably catch most of the problems, but in more complicated value labels, it is easy to
miss the error. labelbook finds such problems and displays a warning.

. Stata allows long value labels (32,000 characters), so labels can be long. However, some commands

may need to display truncated value labels, typically at length 12. Consequently, even if the value
labels are unique, the truncated value labels may not be, which can cause problems. labelbook
warns you for value labels that are not unique at length 12.

. Stata allows value labels that can be interpreted as numbers. This is sometimes useful, but it

can cause highly misleading output. Think about tabulating a variable for which the associated
value label incorrectly maps 1 into ‘“2”, 2 into “3”, and 3 into “1”. labelbook looks for such
problematic labels and warns you if they are found.

426 labelbook — Label utilities

7. In Stata, value labels are defined as separate objects that can be associated with more than one
variable:
label define labname # str # str

label value varnamel labname
label value varname2 labname

If you forget to associate a variable label with a variable, Stata considers the label unused and
drops its definition. labelbook reports unused value labels so that you may fix the problem.

The related command codebook reports on two other potential problems concerning value labels:

a. A variable is value labeled, but some values of the variable are not labeled. You may have
forgotten to define a mapping for some values, or you generated a variable incorrectly;
for example, your sex variable has an unlabeled value 3, and you are not working in
experimental genetics!

b. A variable has been associated with an undefined value label.

labelbook can also be invoked with the problems option, specifying that only a report on
potential problems be displayed without the standard detailed description of the value labels.

Q Technical note

The following two examples demonstrate some features of value labels that may be difficult to
understand. In the first example, we encode a string variable with blank strings of various sizes; that
is, we turn a string variable into a value-labeled numeric variable. Then we tabulate the generated
variable.

. clear all

. set obs b5
number of observations (_N) was O, now 5

. generate strl0 horror = substr(" ", 1, _n)
. encode horror, gen(Ihorror)
. tabulate horror

horror Freq. Percent Cum.
1 20.00 20.00
1 20.00 40.00
1 20.00 60.00
1 20.00 80.00
1 20.00 100.00
Total 5 100.00

It may look as if you have discovered a bug in Stata because there are no value labels in the first
column of the table. This happened because we encoded a variable with only blank strings, so the
associated value label maps integers into blank strings.

. label list TIhorror
Thorror:

G WN e

In the first column of the table, tabulate displayed the value-label texts, just as it should. Because
these texts are all blank, the first column is empty. As illustrated below, labelbook would have
warned you about this odd value label.

labelbook — Label utilities 427

Our second example illustrates what could go wrong with numeric values stored as string values.
We want to turn this into a numeric variable, but we incorrectly encode the variable rather than using
the appropriate command, destring.

. generate strl0 horror2 = string(_n+1)
. encode horror2, gen(Ihorror2)

. tabulate Ihorror2

Ihorror2 Freq. Percent Cum.
2 1 20.00 20.00
3 1 20.00 40.00
4 1 20.00 60.00
5 1 20.00 80.00
6 1 20.00 100.00
Total 5 100.00
. tabulate Thorror2, nolabel
Thorror2 Freq. Percent Cum.
1 1 20.00 20.00
2 1 20.00 40.00
3 1 20.00 60.00
4 1 20.00 80.00
5 1 20.00 100.00
Total 5 100.00
. label list Ihorror2
Thorror2:

O WN e
OO WN

a

labelbook skips the detailed descriptions of the value labels and reports only the potential
problems in the value labels if the problems option is specified. This report would have alerted you
to the problems with the value labels we just described.

. use http://www.stata-press.com/data/ri4/data_in_trouble, clear

. labelbook, problem

Potential problems in dataset http://www.stata-press.com/data/ri4/
> data_in_trouble.dta

potential problem value labels

numeric -> numeric Thorror2
leading or trailing blanks Thorror
numeric -> null str Thorror

Running labelbook, problems and codebook, problems on new data might catch a series of
annoying problems.

428 labelbook — Label utilities

numlabel

The numlabel command allows you to prefix numeric codes to value labels. The reason you
might want to do this is best seen in an example using the automobile data. First, we create a value
label for the variable rep78 (repair record in 1978),

. use http://www.stata-press.com/data/r14/auto
(1978 Automobile Data)

. label define repair 1 "very poor" 2 "poor" 3 "medium" 4 good 5 "very good"

. label values rep78 repair

and tabulate it.

. tabulate rep78

Repair

Record 1978 Freq. Percent Cum.
very poor 2 2.90 2.90
poor 8 11.59 14.49
medium 30 43.48 57.97
good 18 26.09 84.06
very good 11 15.94 100.00

Total 69 100.00

Suppose that we want to recode the variable by joining the categories poor and very poor. To do
this, we need the numerical codes of the categories, not the value labels. However, Stata does not
display both the numeric codes and the value labels. We could redisplay the table with the nolabel
option. The numlabel command provides a simple alternative: it modifies the value labels so that

they also contain the numeric codes.

. numlabel, add
. tabulate rep78

Repair
Record 1978 Freq. Percent Cum.
1. very poor 2 2.90 2.90
2. poor 8 11.59 14.49
3. medium 30 43.48 57.97
4. good 18 26.09 84.06
5. very good 11 15.94 100.00

Total 69 100.00

If you do not like the way the numeric codes are formatted, you can use numlabel to change the
formatting. First, we remove the numeric codes again:

. numlabel repair, remove

In this example, we specified the name of the label. If we had not typed it, numlabel would have
removed the codes from all the value labels. We can include the numeric codes while specifying a

mask:

labelbook — Label utilities 429

. numlabel, add mask("[#] ")
. tabulate rep78

Repair Record
1978 Freq. Percent Cum.
[1]1 very poor 2 2.90 2.90
[2] poor 8 11.59 14.49
[3] medium 30 43.48 57.97
[4] good 18 26.09 84.06
[5] very good 11 15.94 100.00

Total 69 100.00

numlabel prefixes rather than postfixes the value labels with numeric codes. Because value labels
can be fairly long (up to 80 characters), Stata usually displays only the first 12 characters.

uselabel

uselabel is of interest primarily to programmers. Here we briefly illustrate it with the auto
dataset.

> Example 2

. use http://www.stata-press.com/data/r14/auto
(1978 Automobile Data)

. uselabel
. describe

Contains data

obs: 2

vars: 4

size: 32

storage display value

variable name type format label variable label
lname stré %9s
value byte %9.0g
label str8 %9s
trunc byte %8.0g

Sorted by: lname value
Note: Dataset has changed since last saved.

. list
Iname value label trunc
1. origin 0 Domestic 0
2. origin 1 Foreign 0

uselabel created a dataset containing the labels and values for the value label origin.

The maximum length of the text associated with a value label is 32,000 characters, whereas the
maximum length of a string variable in a Stata dataset is 2,045. uselabel uses only the first 2,045
characters of the label. The trunc variable will record a 1 if the text was truncated for this reason.

N

430 labelbook — Label utilities

Stored results
labelbook stores the following in r():

Macros
r (names) Iblname-list
r(gaps) gaps in mapped values
r(blanks) leading or trailing blanks
r(null) name of value label containing null strings
r(nuniq) duplicate labels

r(nuniq—sh) duplicate labels at length 12

r(ntruniq) duplicate labels at maximum string length
r(notused) not used by any of the variables

r(numeric) name of value label containing mappings to numbers

uselabel stores the following in r():

Macros
r (Iblname) list of variables that use value label [blname (only when var option is specified)
Acknowledgments

labelbook and numlabel were written by Jeroen Weesie of the Department of Sociology at
Utrecht University, The Netherlands. A command similar to numlabel was written by J. M. Lauritsen
(2001) of Odense Universiteshospital, Denmark.

References

Lauritsen, J. M. 2001. dm84: labjl: Adding numerical codes to value labels. Stata Technical Bulletin 59: 6-7. Reprinted
in Stata Technical Bulletin Reprints, vol. 10, pp. 35-37. College Station, TX: Stata Press.

Weesie, J. 1997. dm47: Verifying value label mappings. Stata Technical Bulletin 37: 7-8. Reprinted in Stata Technical
Bulletin Reprints, vol. 7, pp. 39—40. College Station, TX: Stata Press.

Also see
[D] codebook — Describe data contents
[D] describe — Describe data in memory or in file
[D] ds — List variables matching name patterns or other characteristics
[D] encode — Encode string into numeric and vice versa
[D] label — Manipulate labels
[U] 12.6 Dataset, variable, and value labels
[U] 15 Saving and printing output—log files

http://www.stata.com/products/stb/journals/stb59.pdf
http://www.stata.com/products/stb/journals/stb37.pdf

Title

list — List values of variables

Description Quick start Menu Syntax
Options Remarks and examples References Also see

Description

list displays the values of variables. If no varlist is specified, the values of all the variables are
displayed. Also see browse in [D] edit.

Quick start

List the data in memory
list

List only data in variables v1, v2, and v3
list v1 v2 v3

As above, but include only the first 10 observations and suppress numbering
list vl v2 v3 in £/10, noobs

As above, but list the last 10 observations
list vl1 v2 v3 in -10/1, noobs

Draw separator line every 10 observations and repeat header row every 20 observations
list vl v2 v3, separator(10) header(20)

As above, but draw separator line between values of v1 and do not show the header
list vl v2 v3, sepby(vl) noheader

Add the mean and sum of the observations at the end of the table and suppress separator and divider
lines

list vl v2 v3, mean sum clean

Menu

Data > Describe data > List data

431

432 list — List values of variables

Syntax

list [varlist} [z_'f] [in} [, options]

flist is equivalent to 1list with the fast option.

options Description
Main
compress compress width of columns in both table and display formats
nocompress use display format of each variable
fast synonym for nocompress; no delay in output of large datasets
abbreviate (#) abbreviate variable names to # display columns; default is ab(8)
string(#) truncate string variables to # display columns
noobs do not list observation numbers
fvall display all levels of factor variables
Options
table force table format
display force display format
header display variable header once; default is table mode
noheader suppress variable header
header (#) display variable header every # lines
clean force table format with no divider or separator lines
divider draw divider lines between columns
separator (#) draw a separator line every # lines; default is separator(5)
%by(varlistz) draw a separator line whenever varlisty values change
nolabel display numeric codes rather than label values
Summary
mean[(varlistg)} add line reporting the mean for the (specified) variables
sum[(varlistg)} add line reporting the sum for the (specified) variables
N[(varlistg)] add line reporting the number of nonmissing values for the (specified)
variables
labvar (varname) substitute Mean, Sum, or N for value of varname in last row of table
Advanced
constant [(varlistg)] separate and list variables that are constant only once
notrim suppress string trimming
absolute display overall observation numbers when using by varlist:
nodotz display numerical values equal to .z as field of blanks
subvarname substitute characteristic for variable name in header

linesize (#)

columns per line; default is 1inesize (79)

varlist may contain factor variables; see [U] 11.4.3 Factor variables.

varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.
by is allowed with 1list; see [D] by.

list — List values of variables 433

Options
Main

Is

compress and nocompress change the width of the columns in both table and display formats. By
default, 1ist examines the data and allocates the needed width to each variable. For instance, a
variable might be a string with a %18s format, and yet the longest string will be only 12 characters
long. Or a numeric variable might have a %9.0g format, and yet, given the values actually present,
the widest number needs only four columns.

nocompress prevents 1ist from examining the data. Widths will be set according to the display
format of each variable. Output generally looks better when nocompress is not specified, but for
very large datasets (say, 1,000,000 observations or more), nocompress can speed up the execution
of list.

compress allows 1ist to engage in a little more compression than it otherwise would by telling
list to abbreviate variable names to fewer than eight characters.

fast is a synonym for nocompress. fast may be of interest to those with very large datasets who
wish to see output appear without delay.

abbreviate (#) is an alternative to compress that allows you to specify the minimum abbreviation
of variable names to be considered. For example, you could specify abbreviate(16) if you
never wanted variables abbreviated to less than 16 display columns. For most users, the number of
display columns is equal to the number of characters. However, some languages, such as Chinese,
Japanese, and Korean (CJK) require two display columns per character.

string(#) specifies that when string variables are listed, they be truncated to # display columns
in the output. Any value that is truncated will be appended with “..” to indicate the truncation.
string() is useful for displaying just a part of long strings.

noobs suppresses the listing of the observation numbers.

fvall specifies that the entire dataset be used to determine how many levels are in any factor variables
specified in varlist. The default is to determine the number of levels by using only the observations
in the if and in qualifiers.

table and display determine the style of output. By default, 1ist determines whether to use table
or display on the basis of the width of your screen and the 1inesize () option, if you specify
it.

table forces table format. Forcing table format when 1ist would have chosen otherwise generally
produces impossible-to-read output because of the linewraps. However, if you are logging output
in SMCL format and plan to print the output on wide paper later, specifying table can be a
reasonable thing to do.

display forces display format.

header, noheader, and header (#) specify how the variable header is to be displayed.
header is the default in table mode and displays the variable header once, at the top of the table.
noheader suppresses the header altogether.

header (#) redisplays the variable header every # observations. For example, header (10) would
display a new header every 10 observations.

434 list — List values of variables

The default in display mode is to display the variable names interweaved with the data:

1. make price | mpg | rep78 | headroom | trunk | weight length
AMC Concord | 4,099 22 3 2.5 11 2,930 186

turn displa~t gear_r~o foreign

40 121 3.58 Domestic

However, if you specify header, the header is displayed once, at the top of the table:

make price | mpg | rep78 | headroom | trunk | weight length
turn displa~t gear_r~o foreign

1. AMC Concord | 4,099 22 3 2.5 11 2,930 186
40 121 3.58 Domestic

clean is a better alternative to table when you want to force table format and your goal is to
produce more readable output on the screen. clean implies table, and it removes all dividing
and separating lines, which is what makes wrapped table output nearly impossible to read.

divider, separator (#), and sepby (varlisty) specify how dividers and separator lines should be
displayed. These three options affect only table format.

divider specifies that divider lines be drawn between columns. The default is nodivider.
separator (#) and sepby (varlisty) indicate when separator lines should be drawn between rows.

separator (#) specifies how often separator lines should be drawn between rows. The default
is separator(5), meaning every 5 observations. You may specify separator(0) to suppress
separators altogether.

sepby (varlisty) specifies that a separator line be drawn whenever any of the variables in
sepby (varlista) change their values; up to 10 variables may be specified. You need not make
sure the data were sorted on sepby (varlists) before issuing the 1ist command. The variables in
sepby (varlisty) also need not be among the variables being listed.

nolabel specifies that numeric codes be displayed rather than the label values.

Summary

mean, sum, N, mean (varlisty), sum(varlists), and N(varlisty) all specify that lines be added to the
output reporting the mean, sum, or number of nonmissing values for the (specified) variables. If
you do not specify the variables, all numeric variables in the varlist following 1ist are used.

labvar (varname) is for use with mean[()], su.m[()], and N[()]. list displays Mean, Sum, or N
where the observation number would usually appear to indicate the end of the table—where a row
represents the calculated mean, sum, or number of observations.

labvar (varname) changes that. Instead, Mean, Sum, or N is displayed where the value for varname
would be displayed. For instance, you might type

list — List values of variables 435

. list group costs profits, sum(costs profits) labvar(group)

group costs profits

1. 1 47 5
2. 2 123 10
3. 3 22 2

Sum 192 17

and then also specify the noobs option to suppress the observation numbers.

Advanced

constant and constant (varlisty) specify that variables that do not vary observation by observation
be separated out and listed only once.

constant specifies that 1ist determine for itself which variables are constant.

constant (varlistz) allows you to specify which of the constant variables you want listed separately.
list verifies that the variables you specify really are constant and issues an error message if they
are not.

constant and constant () respect if exp and in range. If you type
. list if group==

variable x might be constant in the selected observations, even though the variable varies in the
entire dataset.

notrim affects how string variables are listed. The default is to trim strings at the width implied
by the widest possible column given your screen width (or 1inesize(), if you specified that).
notrim specifies that strings not be trimmed. notrim implies clean (see above) and, in fact, is
equivalent to the clean option, so specifying either makes no difference.

absolute affects output only when list is prefixed with by varlist:. Observation numbers are
displayed, but the overall observation numbers are used rather than the observation numbers within
each by-group. For example, if the first group had 4 observations and the second had 2, by default
the observations would be numbered 1, 2, 3, 4 and 1, 2. If absolute is specified, the observations
will be numbered 1, 2, 3, 4 and 5, 6.

nodotz is a programmer’s option that specifies that numerical values equal to .z be listed as a field
of blanks rather than as .z.

subvarname is a programmer’s option. If a variable has the characteristic var[varna.me} set, then
the contents of that characteristic will be used in place of the variable’s name in the headers.

linesize(#) specifies the width of the page to be used for determining whether table or display
format should be used and for formatting the resulting table. Specifying a value of linesize()
that is wider than your screen width can produce truly ugly output on the screen, but that output
can nevertheless be useful if you are logging output and plan to print the log later on a wide
printer.

Remarks and examples

list, typed by itself, lists all the observations and variables in the dataset. If you specify varlist,
only those variables are listed. Specifying one or both of in range and if exp limits the observations
listed.

436 list — List values of variables

list respects line size. That is, if you resize the Results window (in windowed versions of Stata)
before running list, it will take advantage of the available horizontal space. Stata for Unix(console)
users can instead use the set linesize command to take advantage of this feature; see [R] log.

list may not display all the large strings. You have two choices: 1) you can specify the clean
option, which makes a different, less attractive listing, or 2) you can increase line size, as discussed
above.

»> Example 1

list has two output formats, known as table and display. The table format is suitable for listing
a few variables, whereas the display format is suitable for listing an unlimited number of variables.
Stata chooses automatically between those two formats:

. use http://www.stata-press.com/data/r14/auto
(1978 Automobile Data)

. list in 1/2

1. make price | mpg | rep78 | headroom | trunk | weight length
AMC Concord | 4,099 22 3 2.5 11 2,930 186

turn displa~t gear_r~o foreign

40 121 3.58 Domestic
2. make price | mpg | rep78 | headroom | trunk | weight length
AMC Pacer 4,749 17 3 3.0 11 3,350 173

turn displa~t gear_r~o foreign

40 258 2.53 Domestic

. list make mpg weight displ rep78 in 1/5

make mpg weight displa~t rep78
1. AMC Concord 22 2,930 121 3
2. AMC Pacer 17 3,350 258 3
3. AMC Spirit 22 2,640 121 .
4. Buick Century 20 3,250 196 3
5. Buick Electra 15 4,080 350 4

The first case is an example of display format; the second is an example of table format. The
table format is more readable and takes less space, but it is effective only if the variables can fit on
one line across the screen. Stata chose to list all 12 variables in display format, but when the varlist
was restricted to five variables, Stata chose table format.

If you are dissatisfied with Stata’s choice, you can decide for yourself. You can specify the display
option to force display format and the nodisplay option to force table format.

N

Q Technical note

If you have long string variables in your data—say, str75 or longer—by default, 1ist displays
only the first 70 or so characters of each; the exact number is determined by the width of your Results
window. The first 70 or so characters will be shown followed by “...”. If you need to see the entire
contents of the string, you can

list — List values of variables 437

1. specify the clean option, which makes a different (and uglier) style of list, or

2. make your Results window wider [Stata for Unix(console) users: increase set linesize].
a

Q Technical note

Among the things that determine the widths of the columns, the variable names play a role. Left
to itself, 1ist will never abbreviate variable names to fewer than eight characters. You can use the
compress option to abbreviate variable names to fewer characters than that.

a

Q Technical note

When Stata lists a string variable in table output format, the variable is displayed right-justified
by default.

When Stata lists a string variable in display output format, it decides whether to display the
variable right-justified or left-justified according to the display format for the string variable; see
[U] 12.5 Formats: Controlling how data are displayed. In our previous example, make has a display
format of %-18s.

. describe make

storage display value
variable name type format label variable label
make stri8 %-18s Make and Model

The negative sign in the %-18s instructs Stata to left-justify this variable. If the display format had
been %18s, Stata would have right-justified the variable.

The foreign variable appears to be string, but if we describe it, we see that it is not:

. describe foreign

storage display value
variable name type format label variable label
foreign byte %8.0g origin Car type

foreign is stored as a byte, but it has an associated value label named origin; see [U] 12.6.3 Value
labels. Stata decides whether to right-justify or left-justify a numeric variable with an associated value
label by using the same rule used for string variables: it looks at the display format of the variable.
Here the display format of %8.0g tells Stata to right-justify the variable. If the display format had
been %-8.0g, Stata would have left-justified this variable.

a

Q Technical note

You can list the variables in any order. When you specify the varlist, 1ist displays the variables
in the order you specify. You may also include variables more than once in the varlist.
a

438 list — List values of variables

> Example 2

Sometimes you may wish to suppress the observation numbers. You do this by specifying the
noobs option:

. list make mpg weight displ foreign in 46/55, noobs

make mpg weight displa~t foreign
Plym. Volare 18 3,330 225 Domestic
Pont. Catalina 18 3,700 231 Domestic
Pont. Firebird 18 3,470 231 Domestic
Pont. Grand Prix 19 3,210 231 Domestic
Pont. Le Mans 19 3,200 231 Domestic
Pont. Phoenix 19 3,420 231 Domestic
Pont. Sunbird 24 2,690 151 Domestic
Audi 5000 17 2,830 131 Foreign
Audi Fox 23 2,070 97 Foreign
BMW 320i 25 2,650 121 Foreign

After seeing the table, we decide that we want to separate the “Domestic” observations from the
“Foreign” observations, so we specify sepby(foreign).

. list make mpg weight displ foreign in 46/55, noobs sepby(foreign)

make mpg weight displa~t foreign
Plym. Volare 18 3,330 225 Domestic
Pont. Catalina 18 3,700 231 Domestic
Pont. Firebird 18 3,470 231 Domestic
Pont. Grand Prix 19 3,210 231 Domestic
Pont. Le Mans 19 3,200 231 Domestic
Pont. Phoenix 19 3,420 231 Domestic
Pont. Sunbird 24 2,690 151 Domestic
Audi 5000 17 2,830 131 Foreign
Audi Fox 23 2,070 97 Foreign
BMW 320i 25 2,650 121 Foreign

list — List values of variables 439

> Example 3

We want to add vertical lines in the table to separate the variables, so we specify the divider option.
We also want to draw a horizontal line after every 2 observations, so we specify separator(2).

. list make mpg weight displ foreign in 46/55, divider separator(2)

46.
4a7.

48.
49.

50.
51.

52.
53.

54.
55.

make mpg | weight | displa~t foreign
Plym. Volare 18 3,330 225 | Domestic
Pont. Catalina 18 3,700 231 Domestic
Pont. Firebird 18 3,470 231 Domestic
Pont. Grand Prix 19 3,210 231 Domestic
Pont. Le Mans 19 3,200 231 Domestic
Pont. Phoenix 19 3,420 231 Domestic
Pont. Sunbird 24 2,690 151 Domestic
Audi 5000 17 2,830 131 Foreign
Audi Fox 23 2,070 97 Foreign
BMW 320i 25 2,650 121 Foreign

After seeing the table, we decide that we do not want to abbreviate displacement, so we specify

abbreviate(12).

. list make mpg weight displ foreign in 46/55, divider sep(2) abbreviate(12)

46.
a7.

48.
49.

50.
51.

52.
53.

54.
55.

make mpg | weight displacement foreign
Plym. Volare 18 3,330 225 | Domestic
Pont. Catalina 18 3,700 231 Domestic
Pont. Firebird 18 3,470 231 Domestic
Pont. Grand Prix 19 3,210 231 Domestic
Pont. Le Mans 19 3,200 231 Domestic
Pont. Phoenix 19 3,420 231 Domestic
Pont. Sunbird 24 2,690 151 Domestic
Audi 5000 17 2,830 131 Foreign
Audi Fox 23 2,070 97 Foreign
BMW 320i 25 2,650 121 Foreign

Q Technical note

You can suppress the use of value labels by specifying the nolabel option. For instance, the
foreign variable in the examples above really contains numeric codes, with 0 meaning Domestic
and 1 meaning Foreign. When we list the variable, however, we see the corresponding value

labels rather than the underlying numeric code:

440 list — List values of variables

. list foreign in 51/55

foreign
51. Domestic
52. Domestic
53. Foreign
54. Foreign
55. Foreign

Specifying the nolabel option displays the underlying numeric codes:

. list foreign in 51/55, nolabel

foreign

51.
52.
53.
54.
55.

SN o)

References
Harrison, D. A. 2006. Stata tip 34: Tabulation by listing. Stata Journal 6: 425-427.

Lauritsen, J. M. 2001. dm84: labjl: Adding numerical codes to value labels. Stata Technical Bulletin 59: 6-7. Reprinted
in Stata Technical Bulletin Reprints, vol. 10, pp. 35-37. College Station, TX: Stata Press.

Riley, A. R. 1993. dm15: Interactively list values of variables. Stata Technical Bulletin 16: 2—6. Reprinted in Stata
Technical Bulletin Reprints, vol. 3, pp. 37-41. College Station, TX: Stata Press.

Royston, P, and P. D. Sasieni. 1994. dm16: Compact listing of a single variable. Stata Technical Bulletin 17: 7-8.
Reprinted in Stata Technical Bulletin Reprints, vol. 3, pp. 41-43. College Station, TX: Stata Press.

Weesie, J. 1999. dm68: Display of variables in blocks. Stata Technical Bulletin 50: 3—4. Reprinted in Stata Technical
Bulletin Reprints, vol. 9, pp. 27-29. College Station, TX: Stata Press.

Also see
[D] edit — Browse or edit data with Data Editor
[P] display — Display strings and values of scalar expressions
[P] tabdisp — Display tables

[R] table — Flexible table of summary statistics

http://www.stata-journal.com/sjpdf.html?articlenum=dm0023
http://www.stata.com/products/stb/journals/stb59.pdf
http://www.stata.com/products/stb/journals/stb16.pdf
http://www.stata.com/products/stb/journals/stb17.pdf
http://www.stata.com/products/stb/journals/stb50.pdf

Title

lookfor — Search for string in variable names and labels

Description Quick start Syntax Remarks and examples
Stored results References Also see

Description

lookfor helps you find variables by searching for string among all variable names and labels. If
multiple strings are specified, lookfor will search for each of them separately. You may search for
a phrase by enclosing string in double quotes.

Quick start

Search variable names and variable labels for the phrase “my text” regardless of case
lookfor "my text"

Search for “word1” or “word2”
lookfor wordl word2

Syntax

lookfor string [string [..]]

Remarks and examples

> Example 1

lookfor finds variables by searching for string, ignoring case, among the variable names and
labels.

. use http://www.stata-press.com/data/ri14/nlswork
(National Longitudinal Survey. Young Women 14-26 years of age in 1968)

. lookfor code

storage display value
variable name type format label variable label
idcode int %8.0g NLS ID
ind_code byte %8.0g industry of employment
occ_code byte %8.0g occupation

Three variable names contain the word code.

. lookfor married

storage display value
variable name type format label variable label
msp byte %8.0g 1 if married, spouse present
nev_mar byte %8.0g 1 if never married

441

442 lookfor — Search for string in variable names and labels

Two variable labels contain the word married.

. lookfor gnp

storage display value
variable name type format label variable label
1n_wage float %9.0g 1n(wage/GNP deflator)

lookfor ignores case, so lookfor gnp found GNP in a variable label.

> Example 2

If multiple strings are specified, all variable names or labels containing any of the strings are listed.

. lookfor code married

storage display value
variable name type format label variable label
idcode int %8.0g NLS ID
msp byte %8.0g 1 if married, spouse present
nev_mar byte %8.0g 1 if never married
ind_code byte %8.0g industry of employment
occ_code byte %8.0g occupation

To search for a phrase, enclose string in double quotes.

. lookfor "never married"

storage display value
variable name type format label variable label
nev_mar byte %8.0g 1 if never married

Stored results

lookfor stores the following in r():

Macros
r(varlist) the varlist of found variables

References

Cox, N. J. 2010a. Speaking Stata: Finding variables. Stata Journal 10: 281-296.
——. 2010b. Software Updates: Finding variables. Stata Journal 10: 691-692.
——. 2012. Software Updates: Finding variables. Stata Journal 12: 167.

Also see

[D] describe — Describe data in memory or in file

[D] ds — List variables matching name patterns or other characteristics

http://www.stata-journal.com/sjpdf.html?articlenum=dm0048
http://www.stata-journal.com/sjpdf.html?articlenum=up0030
http://www.stata-journal.com/sjpdf.html?articlenum=up0035

Title

memory — Memory management

Description Quick start Syntax Options
Remarks and examples Stored results Reference Also see

Description

Memory usage and settings are described here.
memory displays a report on Stata’s current memory usage.
query memory displays the current values of Stata’s memory settings.

set maxvar, set niceness, set min_memory, set max_memory, and set segmentsize change
the values of the memory settings.

If you are a Unix user, see Serious bug in Linux OS under Remarks and examples below.

Quick start

Display memory usage report
memory

Display memory settings
query memory

Increase the maximum number of variables to 8,000 in Stata/MP or Stata/SE
set maxvar 8000

Set maximum memory allocation to avoid potential memory allocation bug in Linux
set max_memory 16g, permanently

443

444 memory — Memory management

Syntax
Display memory usage report

memory

Display memory settings

query memory

Modity memory settings

set maxvar , permanently

#
set niceness # , permanently

set max_memory amt

[]
[]
set min_memory amt |, permanently]
[, permanently |
[]

set segmentsize amf | , permanently

where amt is #[b|k|m|g], and the default unit is b.

Parameter Default Minimum Maximum
maxvar 5000 2048 32767 (MP and SE)
2047 2047 2047 o
99 99 99 (Small)
niceness 5 0 10
min_memory 0 0 max_memory
max_memory . 2Xxsegmentsize .
segmentsize 32m im 32g (64-bit)
16m im 1g (32-bit)

Notes:

1. The maximum number of variables in your dataset is limited to maxvar. The default value
of maxvar is 5,000 for Stata/MP and Stata/SE, 2,047 for Stata/IC, and 99 for Small Stata.
With Stata/MP and Stata/SE, this default value may be increased by using set maxvar. The
default value is fixed for both Stata/IC and Small Stata.

2. Most users do not need to read beyond this point. Stata’s memory management is completely
automatic. If, however, you are using the Linux operating system, see Serious bug in Linux
OS under Remarks and examples below.

3. The maximum number of observations is fixed at 281,474,976,710,655 for Stata/MP and
is fixed at 2,147,483,647 for Stata/SE and Stata/IC regardless of computer size or memory
settings. Depending on the amount of memory on your computer, you may face a lower
practical limit. See help obs_advice.

memory — Memory management 445

4.

10.

11.

max_memory specifies the maximum amount of memory Stata can use to store your data.
The default of missing (.) means all the memory the operating system is willing to supply.
There are three reasons to change the value from missing to a finite number.

1. You are a Linux user; see Serious bug in Linux OS under Remarks and examples
below.

2. You wish to reduce the chances of accidents, such as typing expand 100000 with
a large dataset in memory and actually having Stata do it. You would rather see
an insufficient-memory error message. Set max_memory to the amount of physical
memory on your computer or more than that if you are willing to use virtual
memory.

3. You are a system administrator; see Notes for system administrators under Remarks
and examples below.

The remaining memory parameters—niceness, min_memory, and segment_size—affect
efficiency only; they do not affect the size of datasets you can analyze.

Memory amounts for min_memory, max_memory, and segmentsize may be specified in
bytes, kilobytes, megabytes, or gigabytes; suffix b, k, m, or g to the end of the number. The
following are equivalent ways of specifying 1 gigabyte:

1073741824
1048576k
1024m

g
Suffix k is defined as (multiply by) 1024, m is defined as 10242, and g is defined as 10243,

64-bit computers can theoretically provide up to 18,446,744,073,709,551,616 bytes of memory,
equivalent to 17,179,869,184 gigabytes, 16,777,216 terabytes, 16,384 petabytes, 16 exabytes.
Real computers have less.

32-bit computers can theoretically provide up to 4,294,967,296 bytes of memory, equivalent
to 4,194,304 kilobytes, 4,096 megabytes, or 4 gigabytes. Most 32-bit operating systems limit
Stata to half that.

Stata allocates memory for data in units of segmentsize. Smaller values of segmentsize
can result in more efficient use of available memory but require Stata to jump around more.
The default provides a good balance. We recommend resetting segmentsize only if your
computer has large amounts of memory.

If you have large amounts of memory and you use it to process large datasets, you may
wish to increase segmentsize. Suggested values are

memory segmentsize

32¢g 64m
64g 128m
128¢g 256m
256g 512m
512¢g 1g
1024¢g 2g

niceness affects how soon Stata gives back unused segments to the operating system. If
Stata releases them too soon, it often needs to turn around and get them right back. If Stata
waits too long, Stata is consuming memory that it is not using. One reason to give memory

446 memory — Memory management

12.

13.

Options

back is to be nice to other users on multiuser systems or to be nice to yourself if you are
running other processes.

The default value of 5 is defined to provide good performance. Waiting times are currently
defined as

niceness waiting time (m:s)

10 0:00.000
9 0:00.125
8 0:00.500
7 0:01
6 0:30
5 1:00
4 5:00
3 10:00
2 15:00
1 20:00
0 30:00

Niceness 10 corresponds to being totally nice. Niceness 0 corresponds to being an incon-
siderate, self-centered, totally selfish jerk.

min_memory specifies an amount of memory Stata will not fall below. For instance, you
have a long do-file. You know that late in the do-file, you will need 8 gigabytes. You want
to ensure that the memory will be available later. At the start of your do-file, you set
min_memory 8g.

Concerning min_memory and max_memory, be aware that Stata allocates memory in seg-
mentsize blocks. Both min_memory and max_memory are rounded down. Thus the actual
minimum memory Stata will reserve will be

segmentsize*trunc (min_memory/segmentsize)

The effective maximum memory is calculated similarly. (Stata does not round up min_memory
because some users set min_memory equal to max_memory.)

permanently specifies that, in addition to making the change right now, the new limit be remembered
and become the default setting when you invoke Stata.

once is not shown in the syntax diagram but is allowed with set niceness, set min_memory,
set max_memory, and set segmentsize. It is for use by system administrators; see Notes for
system administrators under Remarks and examples below.

Remarks and examples

Remarks are presented under the following headings:

Examples
Serious bug in Linux OS
Notes for system administrators

memory — Memory management 447

Examples

Here is our memory-usage report after we load auto.dta that comes with Stata using Stata/MP:

. sysuse auto
(1978 Automobile Data)

. memory

Memory usage

used allocated
data 3,182 67,108,864
strLs 0 0
data & strLs 3,182 67,108,864
data & strLs 3,182 67,108,864
var. names, %fmts, ... 4,151 67,421
overhead 8 800
Stata matrices 0 0
ado-files 5,400 5,400
stored results 0 0
Mata matrices 0 0
Mata functions 0 0
set maxvar usage 5,271,736 5,271,736
other 3,691 3,691
grand total 5,284,248 72,457,912

We could then obtain the current memory-settings report by typing

. query memory

Memory settings

set maxvar 5000 2048-32767; max. vars allowed
set matsize 400 10-11000; max. # vars in models
set niceness 5 0-10

set min_memory 0 0-1600g

set max_memory . 32m-1600g or .

set segmentsize 32m 1m-32g

Serious bug in Linux OS

If you use Linux OS, we strongly suggest that you set max_memory. Here’s why:

“By default, Linux follows an optimistic memory allocation strategy. This means that
when malloc() returns non-NULL there is no guarantee that the memory really is available.
This is a really bad bug. In case it turns out that the system is out of memory, one or
more processes will be killed by the infamous OOM killer. In case Linux is employed
under circumstances where it would be less desirable to suddenly lose some randomly
picked processes, and moreover the kernel version is sufficiently recent, one can switch
off this overcommitting behavior using [...]”

— Output from Unix command man malloc.

What this means is that Stata requests memory from Linux, Linux says yes, and then later when
Stata uses that memory, the memory might not be available and Linux crashes Stata, or worse. The
Linux documentation writer exercised admirable restraint. This bug can cause Linux itself to crash.
It is easy.

448 memory — Memory management

The proponents of this behavior call it “optimistic memory allocation”. We will, like the docu-
mentation writer, refer to it as a bug.

The bug is fixable. Type man malloc at the Unix prompt for instructions. Note that man malloc
is an instruction of Unix, not Stata. If the bug is not mentioned, perhaps it has been fixed. Before
assuming that, we suggest using a search engine to search for “linux optimistic memory allocation”.

Alternatively, Stata can live with the bug if you set max_memory. Find out how much physical
memory is on your computer and set max_memory to that. If you want to use virtual memory, you
might set it larger, just make sure your Linux system can provide the requested memory. Specify the
option permanently so you only need to do this once. For example,

. set max_memory 16g, permanently

Doing this does not guarantee that the bug does not bite, but it makes it unlikely.

Notes for system administrators

System administrators can set max_memory, min_memory, and niceness so that Stata users
cannot change them. You may want to do this on shared computers to prevent individual users from
hogging resources.

There is no reason you would want to do this on users’ personal computers.
You can also set segmentsize, but there is no reason to do this even on shared systems.

The instructions are to create (or edit) the text file sysprofile.do in the directory where the
Stata executable resides. Add the lines

set min_memory O, once
set max_memory 16g, once
set niceness 5, once

The file must be plain text, and there must be end-of-line characters at the end of each line, including
the last line. Blank lines at the end are recommended.

The 16g on set max_memory is merely for example. Choose an appropriate number.

The values of O for min_memory and 5 for niceness are recommended.

Stored results

memory stores all reported numbers in r (). StataCorp may change what memory reports, and you
should not expect the same r() results to exist in future versions of Stata. To see the stored results
from memory, type return list, all.

Reference

Sasieni, P. D. 1997. ip20: Checking for sufficient memory to add variables. Stata Technical Bulletin 40: 13. Reprinted
in Stata Technical Bulletin Reprints, vol. 7, p. 86. College Station, TX: Stata Press.

Also see
[P] creturn — Return c-class values
[R] matsize — Set the maximum number of variables in a model
[R] query — Display system parameters

[U] 6 Managing memory

http://www.stata.com/products/stb/journals/stb40.pdf

Title

merge — Merge datasets

Description Quick start Menu Syntax
Options Remarks and examples References Also see

Description

merge joins corresponding observations from the dataset currently in memory (called the master
dataset) with those from filename.dta (called the using dataset), matching on one or more key
variables. merge can perform match merges (one-to-one, one-to-many, many-to-one, and many-to-
many), which are often called joins by database people. merge can also perform sequential merges,
which have no equivalent in the relational database world.

merge is for adding new variables from a second dataset to existing observations. You use
merge, for instance, when combining hospital patient and discharge datasets. If you wish to add new
observations to existing variables, then see [D] append. You use append, for instance, when adding
current discharges to past discharges.

By default, merge creates a new variable, _merge, containing numeric codes concerning the source
and the contents of each observation in the merged dataset. These codes are explained below in the
match results table.

Key variables cannot be strLs.

If filename is specified without an extension, then .dta is assumed.

Quick start

One-to-one merge of mydatal.dta in memory with mydata2.dta on v1
merge 1:1 vl using mydata2

As above, and also treat v2 as a key variable and name the new variable indicating the merge result
for each observation newv

merge 1:1 vl v2 using mydata2, generate(newv)

As above, but keep only v3 from mydata2.dta and use default merge result variable _merge
merge 1:1 vl v2 using mydata2, keepusing(v3)

As above, but keep only observations in both datasets
merge 1:1 vl v2 using mydata2, keepusing(v3) keep(match)

Same as above
merge 1:1 vl v2 using mydata2, keepusing(v3) keep(3)

As above, but assert that all observations should match or return an error otherwise
merge 1:1 vl v2 using mydata2, keepusing(v3) assert(3)

Replace missing data in mydatal.dta with values from mydata2.dta
merge 1:1 vl v2 using mydata2, update

449

450 merge — Merge datasets

Replace missing and conflicting data in mydatal.dta with values from mydata2.dta
merge 1:1 vl v2 using mydata2, update replace

Many-to-one merge on v1 and v2
merge m:1 vl v2 using mydata?2

One-to-many merge on vl and v2
merge 1:m vl v2 using mydata2

Menu

Data > Combine datasets > Merge two datasets

merge — Merge datasets 451

Syntax
One-to-one merge on specified key variables

merge 1:1 varlist using filename [, options]

Many-to-one merge on specified key variables

merge m:1 varlist using filename [, 0pti0ns]

One-to-many merge on specified key variables

merge 1:m varlist using filename [, options]

Many-to-many merge on specified key variables

merge m:m varlist using filename [, options]

One-to-one merge by observation

merge 1:1 _n using filename [, options]

options Description

Options
keepusing(varlist) variables to keep from using data; default is all
generate(newvar) name of new variable to mark merge results; default is _merge

nogenerate do not create _merge variable

nolabel do not copy value-label definitions from using

nonotes do not copy notes from using

update update missing values of same-named variables in master with values
from using

replace replace all values of same-named variables in master with nonmissing
values from using (requires update)

noreport do not display match result summary table

force allow string/numeric variable type mismatch without error

Results

assert (results) specify required match results

keep (results) specify which match results to keep

sorted do not sort; dataset already sorted

sorted does not appear in the dialog box.

Options
__ [Options |

keepusing(varlist) specifies the variables from the using dataset that are kept in the merged dataset.
By default, all variables are kept. For example, if your using dataset contains 2,000 demographic
characteristics but you want only sex and age, then type merge ..., keepusing(sex age)

452 merge — Merge datasets

generate (newvar) specifies that the variable containing match results information should be named

newvar rather than _merge.

nogenerate specifies that _merge not be created. This would be useful if you also specified

keep(match), because keep(match) ensures that all values of _merge would be 3.

nolabel specifies that value-label definitions from the using file be ignored. This option should be

rare, because definitions from the master are already used.

nonotes specifies that notes in the using dataset not be added to the merged dataset; see [D] notes.

update and replace both perform an update merge rather than a standard merge. In a standard

merge, the data in the master are the authority and inviolable. For example, if the master and
using datasets both contain a variable age, then matched observations will contain values from the
master dataset, while unmatched observations will contain values from their respective datasets.

If update is specified, then matched observations will update missing values from the master dataset
with values from the using dataset. Nonmissing values in the master dataset will be unchanged.

If replace is specified, then matched observations will contain values from the using dataset,
unless the value in the using dataset is missing.

Specifying either update or replace affects the meanings of the match codes. See Treatment of
overlapping variables for details.

noreport specifies that merge not present its summary table of match results.

force allows string/numeric variable type mismatches, resulting in missing values from the using

dataset. If omitted, merge issues an error; if specified, merge issues a warning.

assert (results) specifies the required match results. The possible results are

Numeric Equivalent
code word (results) Description
1 master observation appeared in master only
2 using observation appeared in using only
3 match observation appeared in both
4 match_update observation appeared in both, missing values updated
5 match_conflict observation appeared in both, conflicting nonmissing

values

Codes 4 and 5 can arise only if the update option is specified. If codes of both
4 and 5 could pertain to an observation, then 5 is used.

Numeric codes and words are equivalent when used in the assert () or keep() options.

The following synonyms are allowed: masters for master, usings for using, matches
and matched for match, match_updates for match_update, and match_conflicts for
match_conflict.

Using assert (match master) specifies that the merged file is required to include only matched
master or using observations and unmatched master observations, and may not include unmatched
using observations. Specifying assert() results in merge issuing an error if there are match
results among those observations you allowed.

merge — Merge datasets 453

The order of the words or codes is not important, so all the following assert () specifications
would be the same:

assert(match master)
assert (master matches)
assert(1 3)

When the match results contain codes other than those allowed, return code 9 is returned, and the
merged dataset with the unanticipated results is left in memory to allow you to investigate.

keep (results) specifies which observations are to be kept from the merged dataset. Using keep (match
master) specifies keeping only matched observations and unmatched master observations after
merging.

keep () differs from assert () because it selects observations from the merged dataset rather than
enforcing requirements. keep() is used to pare the merged dataset to a given set of observations
when you do not care if there are other observations in the merged dataset. assert () is used to
verify that only a given set of observations is in the merged dataset.

You can specify both assert () and keep(). If you require matched observations and unmatched
master observations but you want only the matched observations, then you could specify as-
sert (match master) keep(match).

assert() and keep() are convenience options whose functionality can be duplicated using
_merge directly.

. merge ..., assert(match master) keep(match)
is identical to
. merge ...
assert _merge==1 | _merge==

keep if _merge==
The following option is available with merge but is not shown in the dialog box:

sorted specifies that the master and using datasets are already sorted by varlist. If the datasets are
already sorted, then merge runs a little more quickly; the difference is hardly detectable, so this
option is of interest only where speed is of the utmost importance.

Remarks and examples

Remarks are presented under the following headings:

Overview

Basic description

1:1 merges

m:1 merges

1:m merges

m:m merges

Sequential merges

Treatment of overlapping variables
Sort order

Troubleshooting m:m merges
Examples

454 merge — Merge datasets

Overview

merge 1:1 varlist ... specifies a one-to-one match merge. varlist specifies variables common to
both datasets that together uniquely identify single observations in both datasets. For instance, suppose
you have a dataset of customer information, called customer.dta, and have a second dataset of other
information about roughly the same customers, called other.dta. Suppose further that both datasets
identify individuals by using the pid variable, and there is only one observation per individual in
each dataset. You would merge the two datasets by typing

. use customer
. merge 1:1 pid using other

Reversing the roles of the two files would be fine. Choosing which dataset is the master and which
is the using matters only if there are overlapping variable names. 1:1 merges are less common than
1:m and m:1 merges.

merge 1:m and merge m:1 specify one-to-many and many-to-one match merges, respectively.
To illustrate the two choices, suppose you have a dataset containing information about individual
hospitals, called hospitals.dta. In this dataset, each observation contains information about one
hospital, which is uniquely identified by the hospitalid variable. You have a second dataset called
discharges.dta, which contains information on individual hospital stays by many different patients.
discharges.dta also identifies hospitals by using the hospitalid variable. You would like to join
all the information in both datasets. There are two ways you could do this.

merge 1:m varlist ... specifies a one-to-many match merge.

. use hospitals
. merge 1:m hospitalid using discharges

would join the discharge data to the hospital data. This is a 1:m merge because hospitalid uniquely
identifies individual observations in the dataset in memory (hospitals), but could correspond to
many observations in the using dataset.

merge m:1 varlist ... specifies a many-to-one match merge.

. use discharges
. merge m:1 hospitalid using hospitals

would join the hospital data to the discharge data. This is an m:1 merge because hospitalid can
correspond to many observations in the master dataset, but uniquely identifies individual observations
in the using dataset.

merge m:m varlist ... specifies a many-to-many match merge. This is allowed for completeness,
but it is difficult to imagine an example of when it would be useful. For an m:m merge, varlist does not
uniquely identify the observations in either dataset. Matching is performed by combining observations
with equal values of varlist; within matching values, the first observation in the master dataset is
matched with the first matching observation in the using dataset; the second, with the second; and
so on. If there is an unequal number of observations within a group, then the last observation of the
shorter group is used repeatedly to match with subsequent observations of the longer group. Use of
merge m:m is not encouraged.

merge 1:1 _n performs a sequential merge. _n is not a variable name; it is Stata syntax for
observation number. A sequential merge performs a one-to-one merge on observation number. The
first observation of the master dataset is matched with the first observation of the using dataset; the
second, with the second; and so on. If there is an unequal number of observations, the remaining
observations are unmatched. Sequential merges are dangerous, because they require you to rely on
sort order to know that observations belong together. Use this merge at your own risk.

merge — Merge datasets 455

Basic description

Think of merge as being master + using = merged result.

Call the dataset in memory the master dataset, and the dataset on disk the using dataset. This way
we have general names that are not dependent on individual datasets.

Suppose we have two datasets,

master in memory on disk in file filename
id age id wgt
1 22 1 130
2 56 2 180
5 17 4 110

We would like to join together the age and weight information. We notice that the id variable
identifies unique observations in both datasets: if you tell me the id number, then I can tell you the
one observation that contains information about that id. This is true for both the master and the using
datasets.

Because id uniquely identifies observations in both datasets, this is a 1:1 merge. We can bring
in the dataset from disk by typing

. merge 1:1 id using filename

in memory in filename.dta
master + using = merged result
id age id wgt id age wgt
1 22 1 130 1 22 130 (matched)
2 56 2 180 2 56 180 (matched)
5 17 4 110 5 17 . (master only)
4 110| (using only)

The original data in memory are called the master data. The data in filename.dta are called
the using data. After merge, the merged result is left in memory. The id variable is called the key
variable. Stata jargon is that the datasets were merged on id.

Observations for id==1 existed in both the master and using datasets and so were combined in
the merged result. The same occurred for id==2. For id==5 and id==4, however, no matches were
found and thus each became a separate observation in the merged result. Thus each observation in
the merged result came from one of three possible sources:

Numeric Equivalent
code word Description
1 master originally appeared in master only
2 using originally appeared in using only

3 match originally appeared in both

456 merge — Merge datasets

merge encodes this information into new variable _merge, which merge adds to the merged result:

in memory in filename.dta
master + using = merged result
id age id wgt id age wgt _merge
1 22 1 130 1 22 130 3
2 56 2 180 2 56 180 3
5 17 4 110 5 17 . 1
4 110 2

Note: Above we show the master and using data sorted by id before merging; this was for
illustrative purposes. The dataset resulting from a 1:1 merge will have the same data, regardless of
the sort order of the master and using datasets.

The formal definition for merge behavior is the following: Start with the first observation of the
master. Find the corresponding observation in the using data, if there is one. Record the matched or
unmatched result. Proceed to the next observation in the master dataset. When you finish working
through the master dataset, work through unused observations from the using data. By default,
unmatched observations are kept in the merged data, whether they come from the master dataset or
the using dataset.

Remember this formal definition. It will serve you well.

1:1 merges
The example shown above is called a 1:1 merge, because the key variable uniquely identified
each observation in each of the datasets.

A variable or variable list uniquely identifies the observations if each distinct value of the variable(s)
corresponds to one observation in the dataset.

In some datasets, multiple variables are required to identify the observations. Imagine data obtained
by observing patients at specific points in time so that variables pid and time, taken together, identify
the observations. Below we have two such datasets and run a 1:1 merge on pid and time,

. merge 1:1 pid time using filename

master + using = merged result

pid time x1 pid time x2 pid time x1 x2 _merge
14 1 0 14 17 14 1 0 7 3
14 2 0 14 2 9 14 2 0 9 3
14 4 0 16 1 2 14 4 0 . 1
16 1 1 16 2 3 16 1 1 2 3
16 2 1 17 1 5 16 2 1 3 3
17 1 0 17 2 2 17 1 0 5 3
17 2 2 2

This is a 1:1 merge because the combination of the values of pid and time uniquely identifies
observations in both datasets.

By default, there is nothing about a 1:1 merge that implies that all, or even any of, the observations
match. Above five observations matched, one observation was only in the master (subject 14 at time
4), and another was only in the using (subject 17 at time 2).

merge — Merge datasets 457

m:1 merges

In an m: 1 merge, the key variable or variables uniquely identify the observations in the using data,
but not necessarily in the master data. Suppose you had person-level data within regions and you
wished to bring in regional data. Here is an example:

. merge m:1 region using filename

master + using = merged result

id region a region x id region a x _merge
1 2 26 1 15 1 2 26 13 3
2 1 29 2 13 2 1 29 15 3
3 2 22 3 12 3 2 22 13 3
4 3 21 4 11 4 3 21 12 3
5 1 24 5 1 24 15 3
6 5 20 6 5 20 . 1
4 11 2

To bring in the regional information, we need to merge on region. The values of region identify
individual observations in the using data, but it is not an identifier in the master data.

We show the merged dataset sorted by id because this makes it easier to see how the merged
dataset was constructed. For each observation in the master data, merge finds the corresponding
observation in the using data. merge combines the values of the variables in the using dataset to the
observations in the master dataset.

1:m merges

1:m merges are similar to m:1, except that now the key variables identify unique observations in
the master dataset. Any datasets that can be merged using an m:1 merge may be merged using a
1:m merge by reversing the roles of the master and using datasets. Here is the same example as used
previously, with the master and using datasets reversed:

. merge 1:m region using filename

master + using = merged result
region x id region a region x 1id a _merge
1 15 1 2 26 1 15 2 29 3
2 13 2 1 29 1 15 5 24 3
3 12 3 2 22 2 13 1 26 3
4 11 4 3 21 2 13 3 22 3
5 1 24 3 12 4 21 3
6 5 20 4 11 . . 1
5 6 20 2

This merged result is identical to the merged result in the previous section, except for the sort
order and the contents of _merge. This time, we show the merged result sorted by region rather
than id. Reversing the roles of the files causes a reversal in the 1s and 2s for _merge: where _merge
was previously 1, it is now 2, and vice versa. These exchanged _merge values reflect the reversed
roles of the master and using data.

For each observation in the master data, merge found the corresponding observation(s) in the
using data and then wrote down the matched or unmatched result. Once the master observations were
exhausted, merge wrote down any observations from the using data that were never used.

458 merge — Merge datasets

m:m merges

m:m specifies a many-to-many merge and is a bad idea. In an m:m merge, observations are matched
within equal values of the key variable(s), with the first observation being matched to the first; the
second, to the second; and so on. If the master and using have an unequal number of observations
within the group, then the last observation of the shorter group is used repeatedly to match with
subsequent observations of the longer group. Thus m:m merges are dependent on the current sort
order—something which should never happen.

Because m:m merges are such a bad idea, we are not going to show you an example. If you think
that you need an m:m merge, then you probably need to work with your data so that you can use a
1:m or m:1 merge. Tips for this are given in Troubleshooting m:m merges below.

Sequential merges

In a sequential merge, there are no key variables. Observations are matched solely on their
observation number:

. merge 1:1 _n using filename

master + using = merged result
x2 x1 x2 _merge
10 7 10 7 3
30 2 30 2 3
20 1 20 1 3
5 9 5 9 3
3 3 2

In the example above, the using data are longer than the master, but that could be reversed. In
most cases where sequential merges are appropriate, the datasets are expected to be of equal length,
and you should type

. merge 1:1 _n using filename, assert(match) nogenerate

Sequential merges, like m:m merges, are dangerous. Both depend on the current sort order of the
data.

Treatment of overlapping variables

When performing merges of any type, the master and using datasets may have variables in common
other than the key variables. We will call such variables overlapping variables. For instance, if the
variables in the master and using datasets are

master: id, region, sex, age, race

using: id, sex, bp, race

and id is the key variable, then the overlapping variables are sex and race.

By default, merge treats values from the master as inviolable. When observations match, it is the
master’s values of the overlapping variables that are recorded in the merged result.

merge — Merge datasets 459

If you specify the update option, however, then all missing values of overlapping variables in
matched observations are replaced with values from the using data. Because of this new behavior,
the merge codes change somewhat. Codes 1 and 2 keep their old meaning. Code 3 splits into codes
3,4, and 5. Codes 3, 4, and 5 are filtered according to the following rules; the first applicable rule
is used.

5 corresponds to matched observations where at least one overlapping variable had conflicting
nonmissing values.

4 corresponds to matched observations where at least one missing value was updated, but there
were no conflicting nonmissing values.

3 means observations matched, and there were neither updated missing values nor conflicting
nonmissing values.

If you specify both the update and replace options, then the _merge==>5 cases are updated with
values from the using data.

Sort order

As we have mentioned, in the 1:1, 1:m, and m: 1 match merges, the sort orders of the master and
using datasets do not affect the data in the merged dataset. This is not the case of m:m, which we
recommend you never use.

Sorting is used by merge internally for efficiency, so the merged result can be produced most
quickly when the master and using datasets are already sorted by the key variable(s) before merging.
You are not required to have the dataset sorted before using merge, however, because merge will
sort behind the scenes, if necessary. If the using dataset is not sorted, then a temporary copy is made
and sorted to ensure that the current sort order on disk is not affected.

All of this is to reassure you that 1) your datasets on disk will not be modified by merge and
2) despite the fact that our discussion has ignored sort issues, merge is, in fact, efficient behind the
scenes.

It hardly makes any difference in run times, but if you know that the master and using data are
already sorted by the key variable(s), then you can specify the sorted option. All that will be saved
is the time merge would spend discovering that fact for itself.

The merged result produced by merge orders the variables and observations in a special and
sometimes useful way. If you think of datasets as tables, then the columns for the new variables
appear to the right of what was the master. If the master data originally had k variables, then the new
variables will be the (k + 1)st, (k + 2)nd, and so on. The new observations are similarly ordered so
that they all appear at the end of what was the master. If the master originally had /N observations,
then the new observations, if any, are the (/N + 1)st, (N 4+ 2)nd, and so on. Thus the original master
data can be found from the merged result by extracting the first k£ variables and first N observations.
If merge with the update option was specified, however, then be aware that the extracted master
may have some updated values.

The merged result is unsorted except for a 1:1 merge, where there are only matched observations.
Here the dataset is sorted by the key variables.

460 merge — Merge datasets

Troubleshooting m:m merges

First, if you think you need to perform an m:m merge, then we suspect you are wrong. If you
would like to match every observation in the master to every observation in the using with the same
values of the key variable(s), then you should be using joinby; see [D] joinby.

If you still want to use merge, then it is likely that you have forgotten one or more key variables that
could be used to identify observations within groups. Perhaps you have panel data with 4 observations
on each subject, and you are thinking that what you need to do is

. merge m:m subjectid using filename
Ask yourself if you have a variable that identifies observation within panel, such as a sequence
number or a time. If you have, say, a time variable, then you probably should try something like

. merge 1:m subjectid time using filename

(You might need a 1:1 or m:1 merge; 1:m was arbitrarily chosen for the example.)

If you do not have a time or time-like variable, then ask yourself if there is a meaning to matching
the first observations within subject, the second observations within subject, and so on. If so, then
there is a concept of sequence within subject.

Suppose you do indeed have a sequence concept, but in your dataset it is recorded via the ordering
of the observations. Here you are in a dangerous situation because any kind of sorting would lose
the identity of the first, second, and nth observation within subject. Your first goal should be to fix
this problem by creating an explicit sequence variable from the current ordering—your merge can
come later.

Start with your master data. Type

. sort subjectid, stable
. by subjectid: generate seqnum = _n

Do not omit sort’s stable option. That is what will keep the observations in the same order
within subject. Save the data. Perform these same three steps on your using data.

After fixing the datasets, you can now type

. merge 1:m subjectid seqnum using filename

If you do not think there is a meaning to being the first, second, and nth observation within subject,
then you need to ask yourself what it means to match the first observations within subjectid, the
second observations within subjectid, and so on. Would it make equal sense to match the first with
the third, the second with the fourth, or any other haphazard matching? If so, then there is no real

ordering, so there is no real meaning to merging. You are about to obtain a haphazard result; you
need to rethink your merge.

Examples

> Example 1: A 1:1 merge

We have two datasets, one of which has information about the size of old automobiles, and the
other of which has information about their expense:

merge — Merge datasets 461

. use http://www.stata-press.com/data/ri14/autosize
(1978 Automobile Data)

. list

make weight length
1. Toyota Celica 2,410 174
2. BMW 320i 2,650 177
3. Cad. Seville 4,290 204
4. Pont. Grand Prix 3,210 201
5. Datsun 210 2,020 165
6. Plym. Arrow 3,260 170

. use http://www.stata-press.com/data/r14/autoexpense
(1978 Automobile Data)

. list
make price mpg
1. Toyota Celica 5,899 18
2. BMW 3201 9,735 25
3. Cad. Seville 15,906 21
4. Pont. Grand Prix 5,222 19
5. Datsun 210 4,589 35

We can see that these datasets contain different information about nearly the same cars—the autosize
file has one more car. We would like to get all the information about all the cars into one dataset.

Because we are adding new variables to old variables, this is a job for the merge command. We
need only to decide what type of match merge we need.

Looking carefully at the datasets, we see that the make variable, which identifies the cars in each
of the two datasets, also identifies individual observations within the datasets. What this means is
that if you tell me the make of car, I can tell you the one observation that corresponds to that car.
Because this is true for both datasets, we should use a 1:1 merge.

462 merge — Merge datasets

We will start with a clean slate to show the full process:

. use http://www.stata-press.com/data/r14/autosize
(1978 Automobile Data)

. merge 1:1 make using http://www.stata-press.com/data/r14/autoexpense

Result # of obs.
not matched 1
from master 1 (_merge==1)
from using 0 (_merge==2)
matched 5 (_merge==3)
. list
make weight length price mpg _merge
1. BMW 320i 2,650 177 9,735 25 matched (3)
2. Cad. Seville 4,290 204 15,906 21 matched (3)
3. Datsun 210 2,020 165 4,589 35 matched (3)
4. | Plym. Arrow 3,260 170 . master only (1)
5. Pont. Grand Prix 3,210 201 5,222 19 matched (3)
6. Toyota Celica 2,410 174 5,899 18 matched (3)

The merge is successful—all the data are present in the combined dataset, even that from the one car
that has only size information. If we wanted only those makes for which all information is present,
it would be up to us to drop the observations for which _merge < 3.

4

> Example 2: Requiring matches

Suppose we had the same setup as in the previous example, but we erroneously think that we have
all the information on all the cars. We could tell merge that we expect only matches by using the
assert option.

. use http://www.stata-press.com/data/r14/autosize, clear
(1978 Automobile Data)

. merge 1:1 make using http://www.stata-press.com/data/r14/autoexpense,
> assert(match)
merge: after merge, not all observations matched
(merged result left in memory)
r(9);

merge tells us that there is a problem with our assumption. To see how many mismatches there
were, we can tabulate _merge:

merge — Merge datasets 463

. tabulate _merge

_merge Freq. Percent Cum.

master only (1) 1 16.67 16.67

matched (3) 5 83.33 100.00
Total 6 100.00

If we would like to list the problem observation, we can type

. list if _merge < 3

make weight length price mpg _merge

4. | Plym. Arrow 3,260 170 . . master only (1)

If we were convinced that all data should be complete in the two datasets, we would have to
rectify the mismatch in the original datasets.

N

> Example 3: Keeping just the matches

Once again, suppose that we had the same datasets as before, but this time we want the final
dataset to have only those observations for which there is a match. We do not care if there are
mismatches—all that is important are the complete observations. By using the keep (match) option,
we will guarantee that this happens. Because we are keeping only those observations for which the
key variable matches, there is no need to generate the _merge variable. We could do the following:

. use http://www.stata-press.com/data/r14/autosize, clear
(1978 Automobile Data)

. merge 1:1 make using http://www.stata-press.com/data/r14/autoexpense,
> keep(match) nogenerate

Result # of obs.

not matched 0

matched 5

. list

make weight length price mpg
1. BMW 320i 2,650 177 9,735 25
2. Cad. Seville 4,290 204 15,906 21
3. Datsun 210 2,020 165 4,589 35
4. Pont. Grand Prix 3,210 201 5,222 19
5. Toyota Celica 2,410 174 5,899 18

> Example 4: Many-to-one matches

We have two datasets: one has salespeople in regions and the other has regional data about sales.
We would like to put all the information into one dataset. Here are the datasets:

464 merge — Merge datasets

. use http://www.stata-press.com/data/r14/sforce, clear

(Sales Force)

. list
region name
1. N Cntrl Krantz
2. N Cntrl Phipps
3. N Cntrl Willis
4. NE Ecklund
5. NE Franks
6. South Anderson
7. South Dubnoff
8. South Lee
9. South McNeil
10. West Charles
11. West Cobb
12. West Grant

. use http://www.stata-press.com/data/r14/dollars
(Regional Sales & Costs)

. list
region sales cost
1. N Cntrl 419,472 227,677
2. NE 360,523 138,097
3. South 532,399 330,499
4. West 310,565 165,348

We can see that the region would be used to match observations in the two datasets, and this time
we see that region identifies individual observations in the dollars dataset but not in the sforce
dataset. This means we will have to use either anm: 1 or a 1:m merge. Here we will open the sforce
dataset and then merge the dollars dataset. This will be an m:1 merge, because region does not
identify individual observations in the dataset in memory but does identify them in the using dataset.

Here is the command and its result:

. use http://www.stata-press.com/data/r14/sforce

(Sales Force)

. merge m:1 region using http://www.stata-press.com/data/r14/dollars

(label region already defined)

Result # of obs.
not matched 0
matched 12

(_merge==3)

merge — Merge datasets 465

. list
region name sales cost _merge
1. N Cntrl Krantz 419,472 227,677 matched (3)
2. | N Cntrl Phipps 419,472 227,677 matched (3)
3. N Cntrl Willis 419,472 227,677 matched (3)
4. NE Ecklund 360,523 138,097 matched (3)
5. NE Franks 360,523 138,097 matched (3)
6. South Anderson 532,399 330,499 matched (3)
7. South Dubnoff 532,399 330,499 matched (3)
8. South Lee 532,399 330,499 matched (3)
9. South McNeil 532,399 330,499 matched (3)
10. West Charles 310,565 165,348 matched (3)
11. West Cobb 310,565 165,348 matched (3)
12. West Grant 310,565 165,348 matched (3)

We can see from the result that all the values of region were matched in both datasets. This is a
rare occurrence in practice!

Had we had the dollars dataset in memory and merged in the sforce dataset, we would have
done a 1:m merge.

d

We would now like to use a series of examples that shows how merge treats nonkey variables,
which have the same names in the two datasets. We will call these “overlapping” variables.

> Example 5: Overlapping variables

Here are two datasets whose only purpose is for this illustration:

. use http://www.stata-press.com/data/r14/overlapl, clear

. list, sepby(id)

id seq x1 x2
1. 1 1 1 1
2. 1 2 1 .
3. 1 3 1 2
4. 1 4 2
5. 2 1 1
6. 2 2 2
7. 2 3 1 1
8. 2 4 1 2
9. 2 5 a 1
10. 2 6 a 2
11. 3 1 .a
12. 3 2 1
13. 3 3 .
14. 3 4 a .a
15. 10 1 5 8

. use http://www.stata-press.com/data/r14/overlap2

466 merge — Merge datasets

. list
id bar x1 x2
1. 1 11 1 1
2. 2 12 1
3. 3 14 . .a
4. 20 18 1 1

We can see that id can be used as the key variable for putting the two datasets together. We can also
see that there are two overlapping variables: x1 and x2.

We will start with a simple m:1 merge:

. use http://www.stata-press.com/data/ri14/overlapl

. merge m:1 id using http://www.stata-press.com/data/r14/overlap2

Result # of obs.
not matched 2
from master 1 (_merge==1)
from using 1 (_merge==2)
matched 14 (_merge==3)
. list, sepby(id)
id seq x1 x2 bar _merge
1. 1 1 1 1 11 matched (3)
2. 1 2 1 11 matched (3)
3. 1 3 1 2 11 matched (3)
4. 1 4 2 11 matched (3)
5. 2 1 1 12 matched (3)
6. 2 2 . 2 12 matched (3)
7. 2 3 1 1 12 matched (3)
8. 2 4 1 2 12 matched (3)
9. 2 5 .a 1 12 matched (3)
10. 2 6 .a 2 12 matched (3)
11. 3 1 .a 14 matched (3)
12. 3 2 1 14 matched (3)
13. 3 3 . 14 matched (3)
14. 3 4 a .a 14 matched (3)
15. | 10 1 5 8 master only (1)
16. 20 . 1 1 18 using only (2)

Careful inspection shows that for the matched id, the
were originally in the overlapl dataset. This is the
master dataset is the authority and is kept intact.

values of x1 and x2 are still the values that
default behavior of merge—the data in the

4

merge — Merge datasets 467

> Example 6: Updating missing data

Now we would like to investigate the update option. Used by itself, it will replace missing values
in the master dataset with values from the using dataset:

. use http://www.stata-press.com/data/r14/overlapl, clear

. merge m:1 id using http://www.stata-press.com/data/r14/overlap2, update

Result # of obs.

not matched 2
from master 1 (_merge==1)
from using 1 (_merge==2)

matched 14
not updated 5 (_merge==3)
missing updated 4 (_merge==4)
nonmissing conflict 5 (_merge==5)

. list, sepby(id)

id seq x1 x2 bar _merge
1. 1 1 1 1 11 matched (3)
2. 1 2 1 1 11 missing updated (4)
3. 1 3 1 2 11 nonmissing conflict (5)
4. 1 4 1 2 11 nonmissing conflict (5)
5. 2 1 . 1 12 matched (3)
6. 2 2 . 2 12 nonmissing conflict (5)
7. 2 3 1 1 12 matched (3)
8. 2 4 1 2 12 nonmissing conflict (5)
9. 2 5 . 1 12 missing updated (4)
10. 2 6 . 2 12 nonmissing conflict (5)
11. 3 1 .a 14 matched (3)
12. 3 2 1 14 matched (3)
13. 3 3 .a 14 missing updated (4)
14. 3 4 .a 14 missing updated (4)
15 10 1 5 8 master only (1)
16. | 20 . 1 1 18 using only (2)

Looking through the resulting dataset observation by observation, we can see both what the update
option updated as well as how the _merge variable gets its values.

The following is a listing that shows what is happening, where x1_m and x2_m come from the
master dataset (overlapl), x1_u and x2_u come from the using dataset (overlap2), and x1 and
x2 are the values that appear when using merge with the update option.

468 merge — Merge datasets

id | x1m [x1_u [x1 | x2_m | x2_u [x2 _merge
1. 1 1 1 1 1 1 1 matched (3)
2. 1 1 1 1 . 1 1 missing updated (4)
3. 1 1 1 1 2 1 2 nonmissing conflict (5)
4. 1 1 1 2 1 2 | nonmissing conflict (5)
5. 2 1 1 1 matched (3)
6. 2 . . 2 1 2 | nonmissing conflict (5)
7. 2 1 1 1 1 1 matched (3)
8. 2 1 1 2 1 2 | nonmissing conflict (5)
9. 2 .a 1 1 1 missing updated (4)
10. 2 .a 2 1 2 | nonmissing conflict (5)
11. 3 .a .a | .a matched (3)
12. 3 1 .a 1 matched (3)
13. 3 .a | .a missing updated (4)
14. 3 a a .a | .a missing updated (4)
15. 10 5 . 5 8 . 8 master only (1)
16. | 20 . 1 1 . 1 1 using only (2)

From this, we can see two important facts: if there are both a conflict and an updated value, the
value of _merge will reflect that there was a conflict, and missing values in the master dataset are
updated by missing values in the using dataset.

N

> Example 7: Updating all common observations

We would like to see what happens if the update and replace options are specified. The replace
option extends the action of update to use nonmissing values of the using dataset to replace values
in the master dataset. The values of _merge are unaffected by using both update and replace.

. use http://www.stata-press.com/data/r14/overlapl, clear
. merge m:1 id using http://www.stata-press.com/data/r14/overlap2, update replace

Result # of obs.
not matched 2
from master 1 (_merge==1)
from using 1 (_merge==2)
matched 14
not updated 5 (_merge==3)
missing updated 4 (_merge==4)
nonmissing conflict 5 (_merge==5)

merge — Merge datasets 469

. list, sepby(id)

id seq x1 x2 bar _merge
1. 1 1 1 1 11 matched (3)
2. 1 2 1 1 11 missing updated (4)
3. 1 3 1 1 11 nonmissing conflict (5)
4. 1 4 1 1 11 nonmissing conflict (5)
5. 2 1 1 12 matched (3)
6. 2 2 1 12 nonmissing conflict (5)
7. 2 3 1 1 12 matched (3)
8. 2 4 1 1 12 nonmissing conflict (5)
9. 2 5 1 12 missing updated (4)
10. 2 6 1 12 nonmissing conflict (5)
11. 3 1 .a 14 matched (3)
12. 3 2 1 14 matched (3)
13. 3 3 .a 14 missing updated (4)
14. 3 4 .a 14 missing updated (4)
15. | 10 1 5 8 master only (1)
16. | 20 . 1 1 18 using only (2)

> Example 8: More on the keep() option

Suppose we would like to use the update option, as we did above, but we would like to keep only
those observations for which the value of the key variable, id, was found in both datasets. This will
be more complicated than in our earlier example, because the update option splits the matches into
matches, match_updates, and match_conflicts. We must either use all of these code words in
the keep option or use their numerical equivalents, 3, 4, and 5. Here the latter is simpler.

. use http://www.stata-press.com/data/r14/overlapl, clear

. merge m:1 id using http://www.stata-press.com/data/r14/overlap2, update
> keep(3 4 5)

Result # of obs.

not matched 0

matched 14
not updated 5 (_merge==3)
missing updated 4 (_merge==4)

nonmissing conflict 5 (_merge==5)

470 merge — Merge datasets

. list, sepby(id)

id seq x1 x2 bar _merge
1. 1 1 1 1 11 matched (3)
2. 1 2 1 1 11 missing updated (4)
3. 1 3 1 2 11 nonmissing conflict (5)
4. 1 4 1 2 11 nonmissing conflict (5)
5. 2 1 1 12 matched (3)
6. 2 2 . 2 12 nonmissing conflict (5)
7. 2 3 1 1 12 matched (3)
8. 2 4 1 2 12 nonmissing conflict (5)
9. 2 5 1 12 missing updated (4)
10. 2 6 2 12 nonmissing conflict (5)
11. 3 1 .a 14 matched (3)
12. 3 2 1 14 matched (3)
13. 3 3 .a 14 missing updated (4)
14. 3 4 .a 14 missing updated (4)

> Example 9: A one-to-many merge

As a final example, we would like show one example of a 1:m merge. There is nothing conceptually
different here; what is interesting is the order of the observations in the final dataset:

. use http://www.stata-press.com/data/r14/overlap2, clear

. merge 1:m id using http://www.stata-press.com/data/r14/overlapl

Result

of obs.

not matched
from master
from using

matched

2

1 (_merge==1)
1 (_merge==2)

14 (_merge==3)

merge — Merge datasets 471

. list, sepby(id)

id bar x1 x2 seq _merge
1. 1 11 1 1 1 matched (3)
2. 2 12 . 1 1 matched (3)
3. 3 14 . .a 1 matched (3)
4. | 20 18 1 1 . master only (1)
5. 1 11 1 1 2 matched (3)
6. 1 11 1 1 3 matched (3)
7. 1 11 1 1 4 matched (3)
8. 2 12 1 2 matched (3)
9. 2 12 1 3 matched (3)
10. 2 12 1 4 matched (3)
11. 2 12 1 5 matched (3)
12. 2 12 1 6 matched (3)
13. 3 14 2 matched (3)
14. 3 14 . .a 3 matched (3)
15. 3 14 . .a 4 matched (3)
16. 10 . 5 8 1 using only (2)

We can see here that the first four observations come from the master dataset, and all additional
observations, whether matched or unmatched, come below these observations. This illustrates that the
master dataset is always in the upper-left corner of the merged dataset.

4

References
Golbe, D. L. 2010. Stata tip 83: Merging multilingual datasets. Stata Journal 10: 152-156.

Gould, W. W. 2011a. Merging data, part 1: Merges gone bad. The Stata Blog: Not Elsewhere Classified.
http://blog.stata.com/2011/04/18/merging-data-part- 1-merges-gone-bad/.

——. 2011b. Merging data, part 2: Multiple-key merges. The Stata Blog: Not Elsewhere Classified.
http://blog.stata.com/2011/05/27/merging-data-part-2-multiple-key-merges/.

Nash, J. D. 1994. dm19: Merging raw data and dictionary files. Stata Technical Bulletin 20: 3-5. Reprinted in Stata
Technical Bulletin Reprints, vol. 4, pp. 22-25. College Station, TX: Stata Press.

Weesie, J. 2000. dm75: Safe and easy matched merging. Stata Technical Bulletin 53: 6-17. Reprinted in Stata
Technical Bulletin Reprints, vol. 9, pp. 62-77. College Station, TX: Stata Press.

Also see
[D] append — Append datasets
[D] cross — Form every pairwise combination of two datasets
[D] joinby — Form all pairwise combinations within groups
[D] save — Save Stata dataset
[D] sort — Sort data
[U] 22 Combining datasets

http://www.stata-journal.com/sjpdf.html?articlenum=dm0046
http://blog.stata.com/2011/04/18/merging-data-part-1-merges-gone-bad/
http://blog.stata.com/2011/04/18/merging-data-part-1-merges-gone-bad/
http://blog.stata.com/2011/05/27/merging-data-part-2-multiple-key-merges/
http://blog.stata.com/2011/05/27/merging-data-part-2-multiple-key-merges/
http://www.stata.com/products/stb/journals/stb20.pdf
http://www.stata.com/products/stb/journals/stb53.pdf

Title

missing values — Quick reference for missing values

Description Remarks and examples Reference Also see

Description

This entry provides a quick reference for Stata’s missing values.

Remarks and examples

Stata has 27 numeric missing values:
., the default, which is called the system missing value or sysmiss

and
.a, .b, .c, ..., .z, which are called the extended missing values.

Numeric missing values are represented by large positive values. The ordering is

all nonmissing numbers < . < .a < .b<--- < .z

Thus the expression
age > 60

is true if variable age is greater than 60 or missing.

)

To exclude missing values, ask whether the value is less than

. list if age > 60 & age < .
To specify missing values, ask whether the value is greater than or equal to ‘.’. For instance,

. list if age >=.

Stata has one string missing value, which is denoted by "" (blank).

Reference
Cox, N. J. 2010. Stata tip 84: Summing missings. Stata Journal 10: 157-159.

Also see
[U] 12.2.1 Missing values

472

http://www.stata-journal.com/sjpdf.html?articlenum=dm0047

Title

mkdir — Create directory

Description Quick start Syntax Option Remarks and examples
Also see

Description

mkdir creates a new directory (folder).

Quick start

Create mysubdir in the current working directory
mkdir mysubdir

As above, but make mysubdir readable by everyone regardless of default permissions
mkdir mysubdir, public

Create mysubdir in C:\mydir using Stata for Windows
mkdir c:\mydir\mysubdir

Create mysubdir in ~/mydir using Stata for Mac or Unix
mkdir ~/mydir/mysubdir

Create my folder in C:\my dir using Stata for Windows
mkdir "c:\my dir\my folder"

Syntax

mkdir directoryname [, public}

Double quotes may be used to enclose directoryname, and the quotes must be used if directoryname
contains embedded spaces.

Option

public specifies that directoryname be readable by everyone; otherwise, the directory will be created
according to the default permissions of your operating system.

473

474 mkdir — Create directory

Remarks and examples

Examples:
Windows

. mkdir myproj

. mkdir c:\projects\myproj

. mkdir "c:\My Projects\Project 1"
Mac and Unix

. mkdir myproj
. mkdir ~/projects/myproj

Also see
[D] ed — Change directory
[D] copy — Copy file from disk or URL
[D] dir — Display filenames
[D] erase — Erase a disk file
[D] rmdir — Remove directory
[D] shell — Temporarily invoke operating system
[D] type — Display contents of a file

[U] 11.6 Filenaming conventions

Title

mvencode — Change missing values to numeric values and vice versa

Description Quick start Menu Syntax
Options Remarks and examples Acknowledgment Also see
Description

mvencode changes missing values in the specified varlist to numeric values.
mvdecode changes occurrences of a numlist in the specified varlist to a missing-value code.
Missing-value codes may be sysmiss (.) and the extended missing-value codes .a, .b, ..., .z.

String variables in varlist are ignored.

Quick start

Replace all missing values in v1 with 99
mvencode vi, mv(99)

Replace extended missing value .a with 888 and .b with 999 in v2
mvencode v2, mv(.a=888 \ .b=999)

Replace .a with 888, .b with 999, and other missing values with 99 in numeric variables
mvencode _all, mv(.a=888 \ .b=999 \ else=99)

As above, but only for observations where catvar equals 1
mvencode _all if catvar==1, mv(.a=888 \ .b=999 \ else=99)

Replace 888 and 999 with system missing . in all numeric variables
mvdecode _all, mv(888 999)

As above, but replace 888 with .a and 999 with .b
mvdecode _all, mv(888=.a \ 999=.Db)

Menu
mvencode
Data > Create or change data > Other variable-transformation commands > Change missing values to numeric
mvdecode

Data > Create or change data > Other variable-transformation commands > Change numeric values to missing

475

476 mvencode — Change missing values to numeric values and vice versa

Syntax
Change missing values to numeric values

mvencode varlist [lf] [zn] , mv(# | mve=# [\ mvc=*#..] [\ else=#]) [gverride}

Change numeric values to missing values

mvdecode varlist [lf] [m] , mv (numlist | numlist = mve [\ numlist =mvc })

where mvc is one of . | .a|.b]|...|.z

Options
Main

Is

mv (# | mve=# [\ mvc=#.. } [\ else =#]) is required and specifies the numeric values to which

the missing values are to be changed.

mv (#) specifies that all types of missing values be changed to #.

mv (mvc=#) specifies that occurrences of missing-value code mvc be changed to # Multiple
transformation rules may be specified, separated by a backward slash (\). The list may be terminated
by the special rule else=#, specifying that all types of missing values not yet transformed be set

to #.
Examples: mv(9), mv(.=99\.2a=98\.b=97), mv(.=99\ else=98)

mv (numlist | numlist=mvc [\ numlist = mvc]) is required and specifies the numeric values that

are to be changed to missing values.

mv (numlist=mvc) specifies that the values in numlist be changed to missing-value code mvc.
Multiple transformation rules may be specified, separated by a backward slash (\). See [P] numlist

for the syntax of a numlist.
Examples: mv(9), mv(99=.\98=.a\97=.b), mv(99=.\ 100/999=.a)

override specifies that the protection provided by mvencode be overridden. Without this option,
mvencode refuses to make the requested change if any of the numeric values are already used in

the data.

Remarks and examples

You may occasionally read data in which missing (for example, a respondent failed to answer
a survey question or the data were not collected) is coded with a special numeric value. Popular

codings are 9, 99, —9, —99, and the like. If missing were encoded as —99, then

. mvdecode _all, mv(-99)

would translate the special code to the Stata missing value “.”. Use this command cautiously because,

even if —99 were not a special code, all —99s in the data would be changed to missing.

Sometimes different codes are used to represent different reasons for missing values. For instance,
98 may be used for “refused to answer” and 99 for “not applicable”. Extended missing values (.a,

.b, and so on) may be used to code these differences.

. mvdecode _all, mv(98=.a\ 99=.b)

mvencode — Change missing values to numeric values and vice versa 477

[T3EL)

Conversely, you might need to export data to software that does not understand that “.” indicates
a missing value, so you might code missing with a special numeric value. To change all missings to
—99, you could type

. mvencode _all, mv(-99)

To change extended missing values back to numeric values, type

. mvencode _all, mv(.a=98\ .b=99)

This would leave sysmiss and all other extended missing values unchanged. To encode in addition
sysmiss . to 999 and all other extended missing values to 97, you might type

. mvencode _all, mv(.=999\ .a=98\ .b=99\ else=97)

mvencode will automatically recast variables upward, if necessary, so even if a variable is stored as
a byte, its missing values can be recoded to, say, 999. Also mvencode refuses to make the change
if # (—99 here) is already used in the data, so you can be certain that your coding is unique. You
can override this feature by including the override option.

Be aware of another potential problem with encoding and decoding missing values: value labels
are not automatically adapted to the changed codings. You have to do this yourself. For example,
the value label divlabor maps the value 99 to the string “not applicable”. You used mvdecode to
recode 99 to .a for all variables that are associated with this label. To fix the value label, clear the
mapping for 99 and define it again for .a.

. label define divlabor 99 "", modify
. label define divlabor .a "not applicable", add

> Example 1

Our automobile dataset contains 74 observations and 12 variables. Let’s first attempt to translate
the missing values in the data to 1:
. use http://www.stata-press.com/data/r14/auto
(1978 Automobile Data)

. mvencode _all, mv(1)
make: string variable ignored

rep78: already 1 in 2 observations
foreign: already 1 in 22 observations
no action taken

r(9);

Our attempt failed. mvencode first informed us that make is a string variable—this is not a problem
but is reported merely for our information. String variables are ignored by mvencode. It next informed
us that rep78 was already coded 1 in 2 observations and that foreign was already coded 1 in 22
observations. Thus 1 would be a poor choice for encoding missing values because, after encoding,
we could not tell a real 1 from a coded missing value 1.

We could force mvencode to encode the data with 1, anyway, by typing mvencode _all, mv (1)
override. That would be appropriate if the 1s in our data already represented missing data. They
do not, however, so we code missing as 999:

. mvencode _all, mv(999)

make: string variable ignored
rep78: 5 missing values

This worked, and we are informed that the only changes necessary were to 5 observations of rep78.

4

478 mvencode — Change missing values to numeric values and vice versa

> Example 2

Let’s now pretend that we just read in the automobile data from some raw dataset in which all
the missing values were coded 999. We can convert the 999s to real missings by typing

. mvdecode _all, mv(999)
make: string variable ignored
rep78: 5 missing values

We are informed that make is a string variable, so it was ignored, and that rep78 contained 5
observations with 999. Those observations have now been changed to contain missing.

d

Acknowledgment

These versions of mvencode and mvdecode were written by Jeroen Weesie of the Department of
Sociology at Utrecht University, The Netherlands.

Also see
[D] generate — Create or change contents of variable

[D] recode — Recode categorical variables

Title

notes — Place notes in data

Description Quick start Menu Syntax
Remarks and examples References Also see

Description

notes attaches notes to the dataset in memory. These notes become a part of the dataset and are
saved when the dataset is saved and retrieved when the dataset is used; see [D] save and [D] use.
notes can be attached generically to the dataset or specifically to a variable within the dataset.

Quick start

Attach “My note about data” to current dataset
notes: My note about data

Add note “There is one note for v1” to v1
notes vl: There is one note for vl

Add note “A note was added to v2 on” and a time stamp for the note
notes v2: A note was added to v2 on TS

Add note “Data have changed” to the dataset
notes: Data have changed

Remove the first note from the dataset
notes drop _dta in 1

Renumber notes after removing a note from the dataset
notes renumber _dta

As above, but for a variable
notes renumber vl

List all notes
notes

List notes for the dataset but omit notes applied to variables
notes _dta

List only notes for variables
notes *

Search all notes for the word “check”
notes search check

479

480 notes — Place notes in data

Menu
notes (add)

Data > Variables Manager

notes list and notes search

Data > Data utilities > Notes utilities > List or search notes

notes replace

Data > Variables Manager

notes drop

Data > Variables Manager

notes renumber

Data > Data utilities > Notes utilities > Renumber notes

notes — Place notes in data 481

Syntax

Attach notes to dataset

notes [evamame]: text

List all notes

notes

List specific notes

notes [list] evarlist [in #[/#]]

Search for a text string across all notes in all variables and _dta

notes search [sometext]

Replace a note

notes replace evarname in #: text

Drop notes

notes drop evarlist [in #[/#]]

Renumber notes

notes renumber evarname

where evarname is _dta or a varname, evarlist is a varlist that may contain the _dta, and # is a
number or the letter 1.

If text includes the letters TS surrounded by blanks, the TS is removed, and a time stamp is substituted
in its place.

Remarks and examples

Remarks are presented under the following headings:

How notes are numbered
Attaching and listing notes
Selectively listing notes
Searching and replacing notes
Deleting notes

Warnings

482 notes — Place notes in data

How notes are humbered

Notes are numbered sequentially, with the first note being 1. Say the myvar variable has four
notes numbered 1, 2, 3, and 4. If you type notes drop myvar in 3, the remaining notes will be
numbered 1, 2, and 4. If you now add another note, it will be numbered 5. That is, notes are not
renumbered and new notes are added immediately after the highest numbered note. Thus, if you now
dropped notes 4 and 5, the next note added would be 3.

You can renumber notes by using notes renumber. Going back to when myvar had notes
numbered 1, 2, and 4 after dropping note 3, if you typed notes renumber myvar, the notes would
be renumbered 1, 2, and 3. If you added a new note after that, it would be numbered 4.

Attaching and listing notes

A note is nothing formal; it is merely a string of text reminding you to do something, cautioning
you against something, or saying anything else you might feel like jotting down. People who work
with real data invariably end up with paper notes plastered around their terminal saying things like,
“Send the new sales data to Bob”, “Check the income variable in salary95; I don’t believe it”, or
“The gender dummy was significant!” It would be better if these notes were attached to the dataset.

Adding a note to your dataset requires typing note or notes (they are synonyms), a colon (:),
and whatever you want to remember. The note is added to the dataset currently in memory.

. note: Send copy to Bob once verified.

You can replay your notes by typing notes (or note) by itself.

. notes

_dta:
1. Send copy to Bob once verified.

Once you resave your data, you can replay the note in the future, too. You add more notes just as
you did the first:

. note: Mary wants a copy, too.
. notes

_dta:
1. Send copy to Bob once verified.
2. Mary wants a copy, too.

You can place time stamps on your notes by placing the word TS (in capitals) in the text of your
note:

. note: TS merged updates from JJ&F
. notes

_dta:
1. Send copy to Bob once verified.
2. Mary wants a copy, too.
3. 19 Apr 2014 15:38 merged updates from JJ&F

Notes may contain SMCL directives:
. use http://www.stata-press.com/data/r14/auto
(1978 Automobile Data)
. note: check reason for missing values in {cmd:rep78}
. notes

_dta:
1. from Consumer Reports with permission
2. check reason for missing values in rep78

notes — Place notes in data 483

The notes we have added so far are attached to the dataset generically, which is why Stata prefixes
them with _dta when it lists them. You can attach notes to variables:

. note mpg: is the 44 a mistake? Ask Bob.
. note mpg: what about the two missing values?
. notes

_dta:
1. Send copy to Bob once verified.
2. Mary wants a copy, too.
3. 19 Apr 2014 15:38 merged updates from JJ&F

mpg:
1. 1is the 44 a mistake? Ask Bob.
2. what about the two missing values?

Up to 9,999 generic notes can be attached to _dta, and another 9,999 notes can be attached to
each variable.

Selectively listing notes

Typing notes by itself lists all the notes. In full syntax, notes is equivalent to typing notes
_all in 1/1. Here are some variations:

notes _dta list all generic notes

notes mpg list all notes for variable mpg
notes _dta mpg list all generic notes and mpg notes
notes _dta in 3 list generic note 3

notes _dta in 3/5 list generic notes 3-5

notes mpg in 3/5 list mpg notes 3-5

notes _dta in 3/1 list generic notes 3 through last

Searching and replacing notes

You had a bad day yesterday, and you want to recheck the notes that you added to your dataset.
Fortunately, you always put a time stamp on your notes.

. notes search "29 Jan"

_dta:
2. 29 Jan 2014 13:40 check reason for missing values in foreign

Good thing you checked. It is rep78 that has missing values.
. notes replace _dta in 2: TS check reason for missing values in rep78
(note 2 for _dta replaced)
. notes

_dta:
1. from Consumer Reports with permission
2. 30 Jan 2014 12:32 check reason for missing values in rep78

484 notes — Place notes in data

Deleting notes

notes drop works much like listing notes, except that typing notes drop by itself does not
delete all notes; you must type notes drop _all. Here are some variations:

notes drop _dta delete all generic notes

notes drop —dta in 3 delete generic note 3

notes drop _dta in 3/5 delete generic notes 3-5

notes drop _dta in 3/1 delete generic notes 3 through last
notes drop mpg in 4 delete mpg note 4

Warnings
e Notes are stored with the data, and as with other updates you make to the data, the additions and
deletions are not permanent until you save the data; see [D] save.

e The maximum length of one note is 67,784 characters for Stata/MP, Stata/SE, and Stata/IC; it is
13,400 characters for Small Stata.

References

Gleason, J. R. 1998. dm57: A notes editor for Windows and Macintosh. Stata Technical Bulletin 43: 6-9. Reprinted
in Stata Technical Bulletin Reprints, vol. 8, pp. 10-13. College Station, TX: Stata Press.

Long, J. S. 2009. The Workflow of Data Analysis Using Stata. College Station, TX: Stata Press.

Also see
[D] codebook — Describe data contents
[D] describe — Describe data in memory or in file
[D] ds — List variables matching name patterns or other characteristics
[D] save — Save Stata dataset
[D] varmanage — Manage variable labels, formats, and other properties
[U] 12.8 Characteristics

http://www.stata.com/products/stb/journals/stb43.pdf
http://www.stata-press.com/books/wdaus.html

Title

obs — Increase the number of observations in a dataset

Description Quick start Syntax Remarks and examples
Also see

Description
set obs changes the number of observations in the current dataset. # must be at least as large as

the current number of observations. If there are variables in memory, the values of all new observations
are set to missing.

Quick start

Add 100 observations with no observations currently in memory
set obs 100

Add 100 observations with 100 observations currently in memory
set obs 200

Syntax

set obs #

Remarks and examples

> Example 1

set obs can be useful for creating artificial datasets. For instance, if we wanted to graph the

function y = x2 over the range 1-100, we could type
. drop _all
. set obs 100

number of observations (_N) was O, now 100
. generate x = _n
. generate y = x72

. scatter y x
(graph not shown)

485

486 obs — Increase the number of observations in a dataset

> Example 2

If we want to add an extra data point in a program, we could type

. local npl1 = N + 1
. set obs ‘npl’
or

. set obs ‘=_N + 1’

Also see
[D] describe — Describe data in memory or in file

[D] insobs — Add or insert observations

Title

odbc — Load, write, or view data from ODBC sources

Description Quick start Menu Syntax
Options Remarks and examples Also see

Description

odbc allows you to load, write, and view data from Open DataBase Connectivity (ODBC) sources
into Stata. ODBC is a standardized set of function calls for accessing data stored in both relational and
nonrelational database-management systems. By default on Unix platforms, iODBC is the ODBC driver
manager Stata uses, but you can use unixODBC by using the command set odbcmgr unixodbc.

ODBC’s architecture consists of four major components (or layers): the client interface, the ODBC
driver manager, the ODBC drivers, and the data sources. Stata provides odbc as the client interface.
The system is illustrated as follows:

Client interface
(Stata)
odbc list

odbc query
odbc describe ODBC driver manager
odbc load

o) — (o)

odbc insert
odbc exec
odbc sqglfile

odbc list produces a list of ODBC data source names to which Stata can connect.
odbc query retrieves a list of table names available from a specified data source’s system catalog.
odbc describe lists column names and types associated with a specified table.

odbc load reads an ODBC table into memory. You can load an ODBC table specified in the table ()
option or load an ODBC table generated by an SQL SELECT statement specified in the exec () option.
In both cases, you can choose which columns and rows of the ODBC table to read by specifying
extvarlist and if and in conditions. extvarlist specifies the columns to be read and allows you to
rename variables. For example,

. odbc load id=ID name="Last Name", table(Employees) dsn(Northwind)

reads two columns, ID and Last Name, from the Employees table of the Northwind data source.
It will also rename variable ID to id and variable Last Name to name.

odbc insert writes data from memory to an ODBC table. The data can be appended to an existing
table or replace an existing table.

odbc exec allows for most SQL statements to be issued directly to any ODBC data source.
Statements that produce output, such as SELECT, have their output neatly displayed. By using Stata’s
ado language, you can also generate SQL commands on the fly to do positional updates or whatever
the situation requires.

odbc sqlfile provides a “batch job” alternative to the odbc exec command. A file is specified
that contains any number of any length SQL commands. Every SQL command in this file should be
delimited by a semicolon and must be constructed as pure SQL. Stata macros and ado-language syntax

487

488 odbc — Load, write, or view data from ODBC sources

are not permitted. The advantage in using this command, as opposed to odbc exec, is that only one
connection is established for multiple SQL statements. A similar sequence of SQL commands used
via odbc exec would require constructing an ado-file that issued a command and, thus, a connection
for every SQL command. Another slight difference is that any output that might be generated from
an SQL command is suppressed by default. A loud option is provided to toggle output back on.

set odbcdriver unicode specifies that the ODBC driver is a Unicode driver (the default). set
odbcdriver ansi specifies that the ODBC driver is an ANSI driver. You must restart Stata for the
setting to take effect.

set odbcmgr iodbc specifies that the ODBC driver manager is iODBC (the default). set odbcmgr
unixodbc specifies that the ODBC driver manager is unixODBC.

Quick start

List all defined data source names (DSNs) to which Stata can connect
odbc list

List available table names in MyDSN
odbc query "MyDSN"

Describe the column names and data types in table MyTable from MyDSN
odbc describe "MyTable", dsn("MyDSN")

Load MyTable into memory from MyDSN
odbc load, table("MyTable") dsn("MyDSN")

Menu
odbc load
File > Import > ODBC data source

odbc insert
File > Export > ODBC data source

odbc — Load, write, or view data from ODBC sources 489

Syntax
List ODBC sources to which Stata can connect

odbc list

Retrieve available names from specified data source

odbc query ["DataSourceName", verbose schema connect_options}

List column names and types associated with specified table

odbc describe ["TableName", cannect-r)ptions]

Import data from an ODBC data source
odbc load [extvarlist] [lf} [in] s {;able("TableName") | exec ("SqlStmt") }

[load_options connect—_options]

Export data to an ODBC data source

odbc insert [varlisl] [lf] [in], table ("TableName")
{dsn("DataSourceName") | connectionstring("ConnectStr") }

[insert_options connect_options]

Allow SQL statements to be issued directly to ODBC data source

odbc exec("SqlStmt") ,
{dsn("DataSourceName") | connectionstring("ConnectStr") }

[connect_options }

Batch job alternative to odbc exec
odbc sqlfile("filename") ,
{dsn("DataSourceName") | connectionstring("ConnectStr") }

[loud connect_options]

Specify ODBC driver type

set odbcdriver {unicode | ansi } [, permanently}

Specify ODBC driver manager (Mac and Unix only)
set odbcmgr { iodbc | unixodbc } [s permanently]

490 odbc — Load, write, or view data from ODBC sources

DataSourceName is the name of the ODBC source (database, spreadsheet, etc.)
ConnectStr is a valid ODBC connection string
TableName is the name of a table within the ODBC data source
SqlStmt is an SQL SELECT statement
filename is pure SQL commands separated by semicolons
extvarlist contains
sqlvarname
varname = sqlvarname

connect_options Description

user (UserID) user ID of user establishing connection

password (Password) password of user establishing connection

dialog(noprompt) do not display ODBC connection-information dialog, and
do not prompt user for connection information

dialog(prompt) display ODBC connection-information dialog

dialog(complete) display ODBC connection-information dialog only if there
is not enough information

dialog(required) display ODBC connection-information dialog only if there
is not enough mandatory information provided

*dsn (" DataSourceName") name of data source

* connectionstring (" ConnectStr") ODBC connection string

*dsn ("DataSourceName") is not allowed with odbc query. You may not specify both DataSourceName and
connectionstring() with odbc query. Either dsn() or connectionstring() is required with odbc insert,
odbc exec, and odbc sqlfile.

load_options Description
*table ("TableName") name of table stored in data source
*exec ("SqlStmt") SQL SELECT statement to generate a table to be read into Stata
clear load dataset even if there is one in memory
noquote alter Stata’s internal use of SQL commands; seldom used
lowercase read variable names as lowercase
sqlshow show all SQL commands issued
Estring read all variables as strings
datestring read date-formatted variables as strings

*Either table("TableName") or exec("SqlStmt") must be specified with odbc load.

insert_options Description
*table ("TableName") name of table stored in data source
overwrite clear data in ODBC table before data in memory is written to the table
insert default mode of operation for the odbc insert command
quoted quote all values with single quotes as they are inserted in ODBC table
sqlshow show all SQL commands issued
as ("varlist") ODBC variables on the data source that correspond to the variables in
Stata’s memory
block use block inserts

*table ("TableName") is required for odbc insert.

odbc — Load, write, or view data from ODBC sources 491

Options

user (UserID) specifies the user ID of the user attempting to establish the connection to the data
source. By default, Stata assumes that the user ID is the same as the one specified in the previous
odbc command or is empty if user () has never been specified in the current session of Stata.

password (Password) specifies the password of the user attempting to establish the connection to the
data source. By default, Stata assumes that the password is the same as the one previously specified
or is empty if the password has not been used during the current session of Stata. Typically, the
password() option will not be specified apart from the user () option.

dialog(noprompt | prompt | complete | required) specifies the mode the ODBC Driver Manager
uses to display the ODBC connection-information dialog to prompt for more connection information.

noprompt is the default value. The ODBC connection-information dialog is not displayed, and you
are not prompted for connection information. If there is not enough information to establish a
connection to the specified data source, an error is returned.

prompt causes the ODBC connection-information dialog to be displayed.

complete causes the ODBC connection-information dialog to be displayed only if there is not
enough information, even if the information is not mandatory.

required causes the ODBC connection-information dialog to be displayed only if there is not
enough mandatory information provided to establish a connection to the specified data source.
You are prompted only for mandatory information; controls for information that is not required to
connect to the specified data source are disabled.

dsn ("DataSourceName") specifies the name of a data source, as listed by the odbc 1ist command.
If a name contains spaces, it must be enclosed in double quotes. By default, Stata assumes that
the data source name is the same as the one specified in the previous odbc command. This option
is not allowed with odbc query. Either the dsn() option or the connectionstring() option
may be specified with odbc describe and odbc load, and one of these options must be specified
with odbc insert, odbc exec, and odbc sqlfile.

connectionstring("ConnectStr") specifies a connection string rather than the name of a data
source. Stata does not assume that the connection string is the same as the one specified in the
previous odbc command. Either DataSourceName or the connectionstring() option may be
specified with odbc query; either the dsn() option or the connectionstring() option can be
specified with odbc describe and odbc load, and one of these options must be specified with
odbc insert, odbc exec, and odbc sqlfile.

table ("TableName") specifies the name of an ODBC table stored in a specified data source’s system
catalog, as listed by the odbc query command. If a table name contains spaces, it must be
enclosed in double quotes. Either the table() option or the exec() option—but not both—is
required with the odbc load command.

exec ("SqlStmt") allows you to issue an SQL SELECT statement to generate a table to be read into Stata.
An error message is returned if the SELECT statement is an invalid SQL statement. The statement
must be enclosed in double quotes. Either the table() option or the exec() option—but not
both—is required with the odbc load command.

clear permits the data to be loaded, even if there is a dataset already in memory, and even if that
dataset has changed since the data were last saved.

noquote alters Stata’s internal use of SQL commands, specifically those relating to quoted table
names, to better accommodate various drivers. This option has been particularly helpful for DB2
drivers.

492 odbc — Load, write, or view data from ODBC sources

lowercase causes all the variable names to be read as lowercase.

sqlshow is a useful option for showing all SQL commands issued to the ODBC data source from the
odbc insert or odbc load command. This can help you debug any issues related to inserting
or loading.

allstring causes all variables to be read as string data types.
datestring causes all date- and time-formatted variables to be read as string data types.

overwrite allows data to be cleared from an ODBC table before the data in memory are written to
the table. All data from the ODBC table are erased, not just the data from the variable columns
that will be replaced.

insert appends data to an existing ODBC table and is the default mode of operation for the odbc
insert command.

quoted is useful for ODBC data sources that require all inserted values to be quoted. This option
specifies that all values be quoted with single quotes as they are inserted into an ODBC table.

as ("varlist") allows you to specify the ODBC variables on the data source that correspond to the
variables in Stata’s memory. If this option is specified, the number of variables must equal the
number of variables being inserted, even if some names are identical.

loud specifies that output be displayed for SQL commands.

verbose specifies that odbc query list any data source alias, nickname, typed table, typed view, and
view along with tables so that you can load data from these table types.

schema specifies that odbc query return schema names with the table names from a data source.
Note: The schema names returned from odbc query will also be used with the odbc describe
and odbc load commands. When using odbc load with a schema name, you might also need to
specify the noquote option because some drivers do not accept quotes around table or schema
names.

block specifies that odbc insert use block inserts to speed up data-writing performance. Some
drivers do not support block inserts.

permanently (set odbcdriver and set odbcmgr only) specifies that, in addition to making the
change right now, the setting be remembered and become the default setting when you invoke
Stata.

Remarks and examples

When possible, the examples in this manual entry are developed using the Northwind sample
database that is automatically installed with Microsoft Access. If you do not have Access, you can still
use odbc, but you will need to consult the documentation for your other ODBC sources to determine
how to set them up.

Remarks are presented under the following headings:

Unicode and ODBC

Setting up the data sources

Listing ODBC data source names

Listing available table names from a specified data source’s system catalog
Describing a specified table

Loading data from ODBC sources

odbc — Load, write, or view data from ODBC sources 493

Unicode and ODBC

Stata supports accessing databases with Unicode data through Unicode ODBC drivers on the
following platforms:

e Microsoft Windows through ODBC driver manager (version 3.5 or higher).

e Unix through unixODBC driver manager with ODBC drivers compiled for unixODBC. Stata does
not support Unicode drivers when using iODBC as your driver manager. Stata requires that the
driver support UTF-8.

e Mac OS X through unixODBC driver manager with ODBC drivers compiled for unixODBC. Stata
does not support Unicode drivers when using iODBC as your driver manager. Stata requires that
the driver support UTF-8.

Stata supports non-Unicode databases through ASCII drivers with all driver managers.

Setting up the data sources

Before using Stata’s ODBC commands, you must register your ODBC database with the ODBC
Data Source Administrator. This process varies depending on platform, but the following example
shows the steps necessary for Windows.

Using Windows 7 or Vista, follow these steps to create an ODBC User Data Source for the
Northwind sample database:

1. From the Start Menu, select the Control Panel.
2. In the Control Panel window, click on System and Security > Administrative Tools.
3. In the Data Sources (ODBC) dialog box,

a. click on the User DSN tab;

b. click on Add...;

c¢. choose Microsoft Access Driver (*.mdb,*.accdb) on the Create New Data Source dialog
box; and

d. click on Finish.

4. In the ODBC Microsoft Access Setup dialog box, type Northwind in the Data Source Name
field and click on Select.... Locate the Northwind.mdb database and click on OK to finish
creating the data source.

Q Technical note

In earlier versions of Windows, the exact location of the Data Source (ODBC) dialog varies, but
it is always somewhere within the Control Panel.
Q

Listing ODBC data source names

odbc 1list is used to produce a list of data source names to which Stata can connect. For a
specific data source name to be shown in the list, the data source has to be registered with the ODBC
Data Source Administrator. See Setting up the data sources for information on how to do this.

494 odbc — Load, write, or view data from ODBC sources

> Example 1
. odbc list
Data Source Name Driver
dBASE Files Microsoft Access dBASE Driver (*.dbf, *.ndx
Excel Files Microsoft Excel Driver (*.xls, *.xlsx, *.x1
MS Access Database Microsoft Access Driver (*.mdb, *.accdb)
Northwind Microsoft Access Driver (*.mdb, *.accdb)

In the above list, Northwind is one of the sample Microsoft Access databases that Access installs
by default.
N

Listing available table names from a specified data source’s system catalog

odbc query is used to list table names available from a specified data source.

> Example 2

. odbc query "Northwind"

DataSource: Northwind

Path : C:\Program Files\Microsoft Office\Office\Samples\Northwind.accdb
Customers

Employee Privileges

Employees

Inventory Transaction Types
Inventory Transactions
Invoices

Order Details

Order Details Status
Orders

Orders Status

Orders Tax Status
Privileges

Products

Purchase Order Details
Purchase Order Status
Purchase Orders

Sales Reports

Shippers

Strings

Suppliers

odbc — Load, write, or view data from ODBC sources 495

Describing a specified table

odbc describe is used to list column (variable) names and their SQL data types that are associated

with a specified table.

> Example 3

Here we specify that we want to list all variables in the Employees table of the Northwind data

source.

. odbc describe "Employees", dsn("Northwind")

DataSource: Northwind (query)
Table: Employees (load)

Variable Name

Variable Type

D

Company

Last Name
First Name
E-mail Address
Job Title
Business Phone
Home Phone
Mobile Phone
Fax Number
Address

City
State/Province
ZIP/Postal Code
Country/Region
Web Page

Notes
Attachments

COUNTER
VARCHAR
VARCHAR
VARCHAR
VARCHAR
VARCHAR
VARCHAR
VARCHAR
VARCHAR
VARCHAR
LONGCHAR
VARCHAR
VARCHAR
VARCHAR
VARCHAR
LONGCHAR
LONGCHAR
LONGCHAR

Loading data from ODBC sources

odbc load is used to load an ODBC table into memory.

To load an ODBC table listed in the odbc query output, specify the table name in the table ()
option and the data source name in the dsn() option